Metamath Proof Explorer


Theorem copsex2gb

Description: Implicit substitution inference for ordered pairs. Compare copsex2ga . (Contributed by NM, 12-Mar-2014)

Ref Expression
Hypothesis copsex2ga.1 A = x y φ ψ
Assertion copsex2gb x y A = x y ψ A V × V φ

Proof

Step Hyp Ref Expression
1 copsex2ga.1 A = x y φ ψ
2 elvv A V × V x y A = x y
3 2 anbi1i A V × V φ x y A = x y φ
4 19.41vv x y A = x y φ x y A = x y φ
5 1 pm5.32i A = x y φ A = x y ψ
6 5 2exbii x y A = x y φ x y A = x y ψ
7 3 4 6 3bitr2ri x y A = x y ψ A V × V φ