Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered pair theorem
copsex4g
Next ⟩
0nelop
Metamath Proof Explorer
Ascii
Unicode
Theorem
copsex4g
Description:
An implicit substitution inference for 2 ordered pairs.
(Contributed by
NM
, 5-Aug-1995)
Ref
Expression
Hypothesis
copsex4g.1
⊢
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
→
φ
↔
ψ
Assertion
copsex4g
⊢
A
∈
R
∧
B
∈
S
∧
C
∈
R
∧
D
∈
S
→
∃
x
∃
y
∃
z
∃
w
A
B
=
x
y
∧
C
D
=
z
w
∧
φ
↔
ψ
Proof
Step
Hyp
Ref
Expression
1
copsex4g.1
⊢
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
→
φ
↔
ψ
2
eqcom
⊢
A
B
=
x
y
↔
x
y
=
A
B
3
vex
⊢
x
∈
V
4
vex
⊢
y
∈
V
5
3
4
opth
⊢
x
y
=
A
B
↔
x
=
A
∧
y
=
B
6
2
5
bitri
⊢
A
B
=
x
y
↔
x
=
A
∧
y
=
B
7
eqcom
⊢
C
D
=
z
w
↔
z
w
=
C
D
8
vex
⊢
z
∈
V
9
vex
⊢
w
∈
V
10
8
9
opth
⊢
z
w
=
C
D
↔
z
=
C
∧
w
=
D
11
7
10
bitri
⊢
C
D
=
z
w
↔
z
=
C
∧
w
=
D
12
6
11
anbi12i
⊢
A
B
=
x
y
∧
C
D
=
z
w
↔
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
13
12
anbi1i
⊢
A
B
=
x
y
∧
C
D
=
z
w
∧
φ
↔
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
∧
φ
14
13
a1i
⊢
A
∈
R
∧
B
∈
S
∧
C
∈
R
∧
D
∈
S
→
A
B
=
x
y
∧
C
D
=
z
w
∧
φ
↔
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
∧
φ
15
14
4exbidv
⊢
A
∈
R
∧
B
∈
S
∧
C
∈
R
∧
D
∈
S
→
∃
x
∃
y
∃
z
∃
w
A
B
=
x
y
∧
C
D
=
z
w
∧
φ
↔
∃
x
∃
y
∃
z
∃
w
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
∧
φ
16
id
⊢
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
→
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
17
16
1
cgsex4g
⊢
A
∈
R
∧
B
∈
S
∧
C
∈
R
∧
D
∈
S
→
∃
x
∃
y
∃
z
∃
w
x
=
A
∧
y
=
B
∧
z
=
C
∧
w
=
D
∧
φ
↔
ψ
18
15
17
bitrd
⊢
A
∈
R
∧
B
∈
S
∧
C
∈
R
∧
D
∈
S
→
∃
x
∃
y
∃
z
∃
w
A
B
=
x
y
∧
C
D
=
z
w
∧
φ
↔
ψ