Metamath Proof Explorer


Theorem copsex4g

Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995)

Ref Expression
Hypothesis copsex4g.1 x = A y = B z = C w = D φ ψ
Assertion copsex4g A R B S C R D S x y z w A B = x y C D = z w φ ψ

Proof

Step Hyp Ref Expression
1 copsex4g.1 x = A y = B z = C w = D φ ψ
2 eqcom A B = x y x y = A B
3 vex x V
4 vex y V
5 3 4 opth x y = A B x = A y = B
6 2 5 bitri A B = x y x = A y = B
7 eqcom C D = z w z w = C D
8 vex z V
9 vex w V
10 8 9 opth z w = C D z = C w = D
11 7 10 bitri C D = z w z = C w = D
12 6 11 anbi12i A B = x y C D = z w x = A y = B z = C w = D
13 12 anbi1i A B = x y C D = z w φ x = A y = B z = C w = D φ
14 13 a1i A R B S C R D S A B = x y C D = z w φ x = A y = B z = C w = D φ
15 14 4exbidv A R B S C R D S x y z w A B = x y C D = z w φ x y z w x = A y = B z = C w = D φ
16 id x = A y = B z = C w = D x = A y = B z = C w = D
17 16 1 cgsex4g A R B S C R D S x y z w x = A y = B z = C w = D φ ψ
18 15 17 bitrd A R B S C R D S x y z w A B = x y C D = z w φ ψ