Metamath Proof Explorer


Theorem cores

Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cores ran B C A C B = A B

Proof

Step Hyp Ref Expression
1 vex z V
2 vex y V
3 1 2 brelrn z B y y ran B
4 ssel ran B C y ran B y C
5 vex x V
6 5 brresi y A C x y C y A x
7 6 baib y C y A C x y A x
8 3 4 7 syl56 ran B C z B y y A C x y A x
9 8 pm5.32d ran B C z B y y A C x z B y y A x
10 9 exbidv ran B C y z B y y A C x y z B y y A x
11 10 opabbidv ran B C z x | y z B y y A C x = z x | y z B y y A x
12 df-co A C B = z x | y z B y y A C x
13 df-co A B = z x | y z B y y A x
14 11 12 13 3eqtr4g ran B C A C B = A B