Metamath Proof Explorer


Theorem cores2

Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006)

Ref Expression
Assertion cores2 dom A C A B -1 C -1 = A B

Proof

Step Hyp Ref Expression
1 dfdm4 dom A = ran A -1
2 1 sseq1i dom A C ran A -1 C
3 cores ran A -1 C B -1 C A -1 = B -1 A -1
4 2 3 sylbi dom A C B -1 C A -1 = B -1 A -1
5 cnvco A B -1 C -1 -1 = B -1 C -1 -1 A -1
6 cocnvcnv1 B -1 C -1 -1 A -1 = B -1 C A -1
7 5 6 eqtri A B -1 C -1 -1 = B -1 C A -1
8 cnvco A B -1 = B -1 A -1
9 4 7 8 3eqtr4g dom A C A B -1 C -1 -1 = A B -1
10 9 cnveqd dom A C A B -1 C -1 -1 -1 = A B -1 -1
11 relco Rel A B -1 C -1
12 dfrel2 Rel A B -1 C -1 A B -1 C -1 -1 -1 = A B -1 C -1
13 11 12 mpbi A B -1 C -1 -1 -1 = A B -1 C -1
14 relco Rel A B
15 dfrel2 Rel A B A B -1 -1 = A B
16 14 15 mpbi A B -1 -1 = A B
17 10 13 16 3eqtr3g dom A C A B -1 C -1 = A B