Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|
2 |
|
0xr |
|
3 |
|
elioc2 |
|
4 |
2 1 3
|
mp2an |
|
5 |
4
|
simp1bi |
|
6 |
5
|
resqcld |
|
7 |
6
|
rehalfcld |
|
8 |
|
resubcl |
|
9 |
1 7 8
|
sylancr |
|
10 |
9
|
recnd |
|
11 |
|
ax-icn |
|
12 |
5
|
recnd |
|
13 |
|
mulcl |
|
14 |
11 12 13
|
sylancr |
|
15 |
|
4nn0 |
|
16 |
|
eqid |
|
17 |
16
|
eftlcl |
|
18 |
14 15 17
|
sylancl |
|
19 |
18
|
recld |
|
20 |
19
|
recnd |
|
21 |
16
|
recos4p |
|
22 |
5 21
|
syl |
|
23 |
10 20 22
|
mvrladdd |
|
24 |
23
|
fveq2d |
|
25 |
20
|
abscld |
|
26 |
18
|
abscld |
|
27 |
|
6nn |
|
28 |
|
nndivre |
|
29 |
6 27 28
|
sylancl |
|
30 |
|
absrele |
|
31 |
18 30
|
syl |
|
32 |
|
reexpcl |
|
33 |
5 15 32
|
sylancl |
|
34 |
|
nndivre |
|
35 |
33 27 34
|
sylancl |
|
36 |
16
|
ef01bndlem |
|
37 |
|
2nn0 |
|
38 |
37
|
a1i |
|
39 |
|
4z |
|
40 |
|
2re |
|
41 |
|
4re |
|
42 |
|
2lt4 |
|
43 |
40 41 42
|
ltleii |
|
44 |
|
2z |
|
45 |
44
|
eluz1i |
|
46 |
39 43 45
|
mpbir2an |
|
47 |
46
|
a1i |
|
48 |
4
|
simp2bi |
|
49 |
|
0re |
|
50 |
|
ltle |
|
51 |
49 5 50
|
sylancr |
|
52 |
48 51
|
mpd |
|
53 |
4
|
simp3bi |
|
54 |
5 38 47 52 53
|
leexp2rd |
|
55 |
|
6re |
|
56 |
55
|
a1i |
|
57 |
|
6pos |
|
58 |
57
|
a1i |
|
59 |
|
lediv1 |
|
60 |
33 6 56 58 59
|
syl112anc |
|
61 |
54 60
|
mpbid |
|
62 |
26 35 29 36 61
|
ltletrd |
|
63 |
25 26 29 31 62
|
lelttrd |
|
64 |
24 63
|
eqbrtrd |
|
65 |
5
|
recoscld |
|
66 |
65 9 29
|
absdifltd |
|
67 |
|
1cnd |
|
68 |
7
|
recnd |
|
69 |
29
|
recnd |
|
70 |
67 68 69
|
subsub4d |
|
71 |
|
halfpm6th |
|
72 |
71
|
simpri |
|
73 |
72
|
oveq2i |
|
74 |
6
|
recnd |
|
75 |
|
2cn |
|
76 |
|
2ne0 |
|
77 |
75 76
|
reccli |
|
78 |
|
6cn |
|
79 |
27
|
nnne0i |
|
80 |
78 79
|
reccli |
|
81 |
|
adddi |
|
82 |
77 80 81
|
mp3an23 |
|
83 |
74 82
|
syl |
|
84 |
73 83
|
eqtr3id |
|
85 |
|
3cn |
|
86 |
|
3ne0 |
|
87 |
85 86
|
pm3.2i |
|
88 |
|
div12 |
|
89 |
75 87 88
|
mp3an13 |
|
90 |
74 89
|
syl |
|
91 |
|
divrec |
|
92 |
75 76 91
|
mp3an23 |
|
93 |
74 92
|
syl |
|
94 |
|
divrec |
|
95 |
78 79 94
|
mp3an23 |
|
96 |
74 95
|
syl |
|
97 |
93 96
|
oveq12d |
|
98 |
84 90 97
|
3eqtr4rd |
|
99 |
98
|
oveq2d |
|
100 |
70 99
|
eqtrd |
|
101 |
100
|
breq1d |
|
102 |
67 68 69
|
subsubd |
|
103 |
71
|
simpli |
|
104 |
103
|
oveq2i |
|
105 |
|
subdi |
|
106 |
77 80 105
|
mp3an23 |
|
107 |
74 106
|
syl |
|
108 |
104 107
|
eqtr3id |
|
109 |
|
divrec |
|
110 |
85 86 109
|
mp3an23 |
|
111 |
74 110
|
syl |
|
112 |
93 96
|
oveq12d |
|
113 |
108 111 112
|
3eqtr4rd |
|
114 |
113
|
oveq2d |
|
115 |
102 114
|
eqtr3d |
|
116 |
115
|
breq2d |
|
117 |
101 116
|
anbi12d |
|
118 |
66 117
|
bitrd |
|
119 |
64 118
|
mpbid |
|