Metamath Proof Explorer


Theorem cos01gt0

Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion cos01gt0 A 0 1 0 < cos A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1re 1
3 elioc2 0 * 1 A 0 1 A 0 < A A 1
4 1 2 3 mp2an A 0 1 A 0 < A A 1
5 4 simp1bi A 0 1 A
6 5 resqcld A 0 1 A 2
7 6 recnd A 0 1 A 2
8 2cn 2
9 3cn 3
10 3ne0 3 0
11 9 10 pm3.2i 3 3 0
12 div12 2 A 2 3 3 0 2 A 2 3 = A 2 2 3
13 8 11 12 mp3an13 A 2 2 A 2 3 = A 2 2 3
14 7 13 syl A 0 1 2 A 2 3 = A 2 2 3
15 2z 2
16 expgt0 A 2 0 < A 0 < A 2
17 15 16 mp3an2 A 0 < A 0 < A 2
18 17 3adant3 A 0 < A A 1 0 < A 2
19 4 18 sylbi A 0 1 0 < A 2
20 2lt3 2 < 3
21 2re 2
22 3re 3
23 3pos 0 < 3
24 21 22 22 23 ltdiv1ii 2 < 3 2 3 < 3 3
25 20 24 mpbi 2 3 < 3 3
26 9 10 dividi 3 3 = 1
27 25 26 breqtri 2 3 < 1
28 21 22 10 redivcli 2 3
29 ltmul2 2 3 1 A 2 0 < A 2 2 3 < 1 A 2 2 3 < A 2 1
30 28 2 29 mp3an12 A 2 0 < A 2 2 3 < 1 A 2 2 3 < A 2 1
31 27 30 mpbii A 2 0 < A 2 A 2 2 3 < A 2 1
32 6 19 31 syl2anc A 0 1 A 2 2 3 < A 2 1
33 7 mulid1d A 0 1 A 2 1 = A 2
34 32 33 breqtrd A 0 1 A 2 2 3 < A 2
35 14 34 eqbrtrd A 0 1 2 A 2 3 < A 2
36 0re 0
37 ltle 0 A 0 < A 0 A
38 36 37 mpan A 0 < A 0 A
39 38 imdistani A 0 < A A 0 A
40 le2sq2 A 0 A 1 A 1 A 2 1 2
41 2 40 mpanr1 A 0 A A 1 A 2 1 2
42 39 41 stoic3 A 0 < A A 1 A 2 1 2
43 4 42 sylbi A 0 1 A 2 1 2
44 sq1 1 2 = 1
45 43 44 breqtrdi A 0 1 A 2 1
46 redivcl A 2 3 3 0 A 2 3
47 22 10 46 mp3an23 A 2 A 2 3
48 6 47 syl A 0 1 A 2 3
49 remulcl 2 A 2 3 2 A 2 3
50 21 48 49 sylancr A 0 1 2 A 2 3
51 ltletr 2 A 2 3 A 2 1 2 A 2 3 < A 2 A 2 1 2 A 2 3 < 1
52 2 51 mp3an3 2 A 2 3 A 2 2 A 2 3 < A 2 A 2 1 2 A 2 3 < 1
53 50 6 52 syl2anc A 0 1 2 A 2 3 < A 2 A 2 1 2 A 2 3 < 1
54 35 45 53 mp2and A 0 1 2 A 2 3 < 1
55 posdif 2 A 2 3 1 2 A 2 3 < 1 0 < 1 2 A 2 3
56 50 2 55 sylancl A 0 1 2 A 2 3 < 1 0 < 1 2 A 2 3
57 54 56 mpbid A 0 1 0 < 1 2 A 2 3
58 cos01bnd A 0 1 1 2 A 2 3 < cos A cos A < 1 A 2 3
59 58 simpld A 0 1 1 2 A 2 3 < cos A
60 resubcl 1 2 A 2 3 1 2 A 2 3
61 2 50 60 sylancr A 0 1 1 2 A 2 3
62 5 recoscld A 0 1 cos A
63 lttr 0 1 2 A 2 3 cos A 0 < 1 2 A 2 3 1 2 A 2 3 < cos A 0 < cos A
64 36 61 62 63 mp3an2i A 0 1 0 < 1 2 A 2 3 1 2 A 2 3 < cos A 0 < cos A
65 57 59 64 mp2and A 0 1 0 < cos A