Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|
2 |
|
1re |
|
3 |
|
elioc2 |
|
4 |
1 2 3
|
mp2an |
|
5 |
4
|
simp1bi |
|
6 |
5
|
resqcld |
|
7 |
6
|
recnd |
|
8 |
|
2cn |
|
9 |
|
3cn |
|
10 |
|
3ne0 |
|
11 |
9 10
|
pm3.2i |
|
12 |
|
div12 |
|
13 |
8 11 12
|
mp3an13 |
|
14 |
7 13
|
syl |
|
15 |
|
2z |
|
16 |
|
expgt0 |
|
17 |
15 16
|
mp3an2 |
|
18 |
17
|
3adant3 |
|
19 |
4 18
|
sylbi |
|
20 |
|
2lt3 |
|
21 |
|
2re |
|
22 |
|
3re |
|
23 |
|
3pos |
|
24 |
21 22 22 23
|
ltdiv1ii |
|
25 |
20 24
|
mpbi |
|
26 |
9 10
|
dividi |
|
27 |
25 26
|
breqtri |
|
28 |
21 22 10
|
redivcli |
|
29 |
|
ltmul2 |
|
30 |
28 2 29
|
mp3an12 |
|
31 |
27 30
|
mpbii |
|
32 |
6 19 31
|
syl2anc |
|
33 |
7
|
mulid1d |
|
34 |
32 33
|
breqtrd |
|
35 |
14 34
|
eqbrtrd |
|
36 |
|
0re |
|
37 |
|
ltle |
|
38 |
36 37
|
mpan |
|
39 |
38
|
imdistani |
|
40 |
|
le2sq2 |
|
41 |
2 40
|
mpanr1 |
|
42 |
39 41
|
stoic3 |
|
43 |
4 42
|
sylbi |
|
44 |
|
sq1 |
|
45 |
43 44
|
breqtrdi |
|
46 |
|
redivcl |
|
47 |
22 10 46
|
mp3an23 |
|
48 |
6 47
|
syl |
|
49 |
|
remulcl |
|
50 |
21 48 49
|
sylancr |
|
51 |
|
ltletr |
|
52 |
2 51
|
mp3an3 |
|
53 |
50 6 52
|
syl2anc |
|
54 |
35 45 53
|
mp2and |
|
55 |
|
posdif |
|
56 |
50 2 55
|
sylancl |
|
57 |
54 56
|
mpbid |
|
58 |
|
cos01bnd |
|
59 |
58
|
simpld |
|
60 |
|
resubcl |
|
61 |
2 50 60
|
sylancr |
|
62 |
5
|
recoscld |
|
63 |
|
lttr |
|
64 |
36 61 62 63
|
mp3an2i |
|
65 |
57 59 64
|
mp2and |
|