Metamath Proof Explorer


Theorem cos02pilt1

Description: Cosine is less than one between zero and 2 x. _pi . (Contributed by Jim Kingdon, 23-Mar-2024)

Ref Expression
Assertion cos02pilt1 A 0 2 π cos A < 1

Proof

Step Hyp Ref Expression
1 elioore A 0 2 π A
2 1 recoscld A 0 2 π cos A
3 1red A 0 2 π 1
4 cosbnd A 1 cos A cos A 1
5 4 simprd A cos A 1
6 1 5 syl A 0 2 π cos A 1
7 0zd A 0 2 π 0
8 2re 2
9 pire π
10 8 9 remulcli 2 π
11 10 a1i A 0 2 π 2 π
12 0xr 0 *
13 10 rexri 2 π *
14 elioo2 0 * 2 π * A 0 2 π A 0 < A A < 2 π
15 12 13 14 mp2an A 0 2 π A 0 < A A < 2 π
16 15 simp2bi A 0 2 π 0 < A
17 2rp 2 +
18 pirp π +
19 rpmulcl 2 + π + 2 π +
20 17 18 19 mp2an 2 π +
21 rpgt0 2 π + 0 < 2 π
22 20 21 mp1i A 0 2 π 0 < 2 π
23 1 11 16 22 divgt0d A 0 2 π 0 < A 2 π
24 20 a1i A 0 2 π 2 π +
25 15 simp3bi A 0 2 π A < 2 π
26 1 11 24 25 ltdiv1dd A 0 2 π A 2 π < 2 π 2 π
27 11 recnd A 0 2 π 2 π
28 22 gt0ne0d A 0 2 π 2 π 0
29 27 28 dividd A 0 2 π 2 π 2 π = 1
30 26 29 breqtrd A 0 2 π A 2 π < 1
31 0p1e1 0 + 1 = 1
32 30 31 breqtrrdi A 0 2 π A 2 π < 0 + 1
33 btwnnz 0 0 < A 2 π A 2 π < 0 + 1 ¬ A 2 π
34 7 23 32 33 syl3anc A 0 2 π ¬ A 2 π
35 1 recnd A 0 2 π A
36 coseq1 A cos A = 1 A 2 π
37 35 36 syl A 0 2 π cos A = 1 A 2 π
38 34 37 mtbird A 0 2 π ¬ cos A = 1
39 38 neqned A 0 2 π cos A 1
40 39 necomd A 0 2 π 1 cos A
41 2 3 6 40 leneltd A 0 2 π cos A < 1