Metamath Proof Explorer


Theorem cos11

Description: Cosine is one-to-one over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion cos11 A 0 π B 0 π A = B cos A = cos B

Proof

Step Hyp Ref Expression
1 ancom ¬ A < B ¬ B < A ¬ B < A ¬ A < B
2 cosord B 0 π A 0 π B < A cos A < cos B
3 2 ancoms A 0 π B 0 π B < A cos A < cos B
4 3 notbid A 0 π B 0 π ¬ B < A ¬ cos A < cos B
5 cosord A 0 π B 0 π A < B cos B < cos A
6 5 notbid A 0 π B 0 π ¬ A < B ¬ cos B < cos A
7 4 6 anbi12d A 0 π B 0 π ¬ B < A ¬ A < B ¬ cos A < cos B ¬ cos B < cos A
8 1 7 syl5bb A 0 π B 0 π ¬ A < B ¬ B < A ¬ cos A < cos B ¬ cos B < cos A
9 0re 0
10 pire π
11 9 10 elicc2i A 0 π A 0 A A π
12 11 simp1bi A 0 π A
13 9 10 elicc2i B 0 π B 0 B B π
14 13 simp1bi B 0 π B
15 lttri3 A B A = B ¬ A < B ¬ B < A
16 12 14 15 syl2an A 0 π B 0 π A = B ¬ A < B ¬ B < A
17 recoscl A cos A
18 recoscl B cos B
19 lttri3 cos A cos B cos A = cos B ¬ cos A < cos B ¬ cos B < cos A
20 17 18 19 syl2an A B cos A = cos B ¬ cos A < cos B ¬ cos B < cos A
21 12 14 20 syl2an A 0 π B 0 π cos A = cos B ¬ cos A < cos B ¬ cos B < cos A
22 8 16 21 3bitr4d A 0 π B 0 π A = B cos A = cos B