Metamath Proof Explorer


Theorem cos1bnd

Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion cos1bnd 1 3 < cos 1 cos 1 < 2 3

Proof

Step Hyp Ref Expression
1 sq1 1 2 = 1
2 1 oveq1i 1 2 3 = 1 3
3 2 oveq2i 2 1 2 3 = 2 1 3
4 2cn 2
5 3cn 3
6 3ne0 3 0
7 4 5 6 divreci 2 3 = 2 1 3
8 3 7 eqtr4i 2 1 2 3 = 2 3
9 8 oveq2i 1 2 1 2 3 = 1 2 3
10 ax-1cn 1
11 4 5 6 divcli 2 3
12 5 6 reccli 1 3
13 df-3 3 = 2 + 1
14 13 oveq1i 3 3 = 2 + 1 3
15 5 6 dividi 3 3 = 1
16 4 10 5 6 divdiri 2 + 1 3 = 2 3 + 1 3
17 14 15 16 3eqtr3ri 2 3 + 1 3 = 1
18 10 11 12 17 subaddrii 1 2 3 = 1 3
19 9 18 eqtri 1 2 1 2 3 = 1 3
20 1re 1
21 0lt1 0 < 1
22 1le1 1 1
23 0xr 0 *
24 elioc2 0 * 1 1 0 1 1 0 < 1 1 1
25 23 20 24 mp2an 1 0 1 1 0 < 1 1 1
26 cos01bnd 1 0 1 1 2 1 2 3 < cos 1 cos 1 < 1 1 2 3
27 25 26 sylbir 1 0 < 1 1 1 1 2 1 2 3 < cos 1 cos 1 < 1 1 2 3
28 20 21 22 27 mp3an 1 2 1 2 3 < cos 1 cos 1 < 1 1 2 3
29 28 simpli 1 2 1 2 3 < cos 1
30 19 29 eqbrtrri 1 3 < cos 1
31 28 simpri cos 1 < 1 1 2 3
32 2 oveq2i 1 1 2 3 = 1 1 3
33 10 12 11 subadd2i 1 1 3 = 2 3 2 3 + 1 3 = 1
34 17 33 mpbir 1 1 3 = 2 3
35 32 34 eqtri 1 1 2 3 = 2 3
36 31 35 breqtri cos 1 < 2 3
37 30 36 pm3.2i 1 3 < cos 1 cos 1 < 2 3