Metamath Proof Explorer


Theorem cos2bnd

Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion cos2bnd 7 9 < cos 2 cos 2 < 1 9

Proof

Step Hyp Ref Expression
1 7cn 7
2 9cn 9
3 9re 9
4 9pos 0 < 9
5 3 4 gt0ne0ii 9 0
6 divneg 7 9 9 0 7 9 = 7 9
7 1 2 5 6 mp3an 7 9 = 7 9
8 2cn 2
9 2 5 pm3.2i 9 9 0
10 divsubdir 2 9 9 9 0 2 9 9 = 2 9 9 9
11 8 2 9 10 mp3an 2 9 9 = 2 9 9 9
12 2 8 negsubdi2i 9 2 = 2 9
13 7p2e9 7 + 2 = 9
14 2 8 1 subadd2i 9 2 = 7 7 + 2 = 9
15 13 14 mpbir 9 2 = 7
16 15 negeqi 9 2 = 7
17 12 16 eqtr3i 2 9 = 7
18 17 oveq1i 2 9 9 = 7 9
19 11 18 eqtr3i 2 9 9 9 = 7 9
20 2 5 dividi 9 9 = 1
21 20 oveq2i 2 9 9 9 = 2 9 1
22 7 19 21 3eqtr2ri 2 9 1 = 7 9
23 ax-1cn 1
24 8 23 2 5 divassi 2 1 9 = 2 1 9
25 2t1e2 2 1 = 2
26 25 oveq1i 2 1 9 = 2 9
27 24 26 eqtr3i 2 1 9 = 2 9
28 3cn 3
29 3ne0 3 0
30 23 28 29 sqdivi 1 3 2 = 1 2 3 2
31 sq1 1 2 = 1
32 sq3 3 2 = 9
33 31 32 oveq12i 1 2 3 2 = 1 9
34 30 33 eqtri 1 3 2 = 1 9
35 cos1bnd 1 3 < cos 1 cos 1 < 2 3
36 35 simpli 1 3 < cos 1
37 0le1 0 1
38 3pos 0 < 3
39 1re 1
40 3re 3
41 39 40 divge0i 0 1 0 < 3 0 1 3
42 37 38 41 mp2an 0 1 3
43 0re 0
44 recoscl 1 cos 1
45 39 44 ax-mp cos 1
46 40 29 rereccli 1 3
47 43 46 45 lelttri 0 1 3 1 3 < cos 1 0 < cos 1
48 42 36 47 mp2an 0 < cos 1
49 43 45 48 ltleii 0 cos 1
50 46 45 lt2sqi 0 1 3 0 cos 1 1 3 < cos 1 1 3 2 < cos 1 2
51 42 49 50 mp2an 1 3 < cos 1 1 3 2 < cos 1 2
52 36 51 mpbi 1 3 2 < cos 1 2
53 34 52 eqbrtrri 1 9 < cos 1 2
54 2pos 0 < 2
55 3 5 rereccli 1 9
56 45 resqcli cos 1 2
57 2re 2
58 55 56 57 ltmul2i 0 < 2 1 9 < cos 1 2 2 1 9 < 2 cos 1 2
59 54 58 ax-mp 1 9 < cos 1 2 2 1 9 < 2 cos 1 2
60 53 59 mpbi 2 1 9 < 2 cos 1 2
61 27 60 eqbrtrri 2 9 < 2 cos 1 2
62 57 3 5 redivcli 2 9
63 57 56 remulcli 2 cos 1 2
64 ltsub1 2 9 2 cos 1 2 1 2 9 < 2 cos 1 2 2 9 1 < 2 cos 1 2 1
65 62 63 39 64 mp3an 2 9 < 2 cos 1 2 2 9 1 < 2 cos 1 2 1
66 61 65 mpbi 2 9 1 < 2 cos 1 2 1
67 22 66 eqbrtrri 7 9 < 2 cos 1 2 1
68 25 fveq2i cos 2 1 = cos 2
69 cos2t 1 cos 2 1 = 2 cos 1 2 1
70 23 69 ax-mp cos 2 1 = 2 cos 1 2 1
71 68 70 eqtr3i cos 2 = 2 cos 1 2 1
72 67 71 breqtrri 7 9 < cos 2
73 35 simpri cos 1 < 2 3
74 0le2 0 2
75 57 40 divge0i 0 2 0 < 3 0 2 3
76 74 38 75 mp2an 0 2 3
77 57 40 29 redivcli 2 3
78 45 77 lt2sqi 0 cos 1 0 2 3 cos 1 < 2 3 cos 1 2 < 2 3 2
79 49 76 78 mp2an cos 1 < 2 3 cos 1 2 < 2 3 2
80 73 79 mpbi cos 1 2 < 2 3 2
81 8 28 29 sqdivi 2 3 2 = 2 2 3 2
82 sq2 2 2 = 4
83 82 32 oveq12i 2 2 3 2 = 4 9
84 81 83 eqtri 2 3 2 = 4 9
85 80 84 breqtri cos 1 2 < 4 9
86 4re 4
87 86 3 5 redivcli 4 9
88 56 87 57 ltmul2i 0 < 2 cos 1 2 < 4 9 2 cos 1 2 < 2 4 9
89 54 88 ax-mp cos 1 2 < 4 9 2 cos 1 2 < 2 4 9
90 85 89 mpbi 2 cos 1 2 < 2 4 9
91 4cn 4
92 8 91 2 5 divassi 2 4 9 = 2 4 9
93 4t2e8 4 2 = 8
94 91 8 93 mulcomli 2 4 = 8
95 94 oveq1i 2 4 9 = 8 9
96 92 95 eqtr3i 2 4 9 = 8 9
97 90 96 breqtri 2 cos 1 2 < 8 9
98 8re 8
99 98 3 5 redivcli 8 9
100 ltsub1 2 cos 1 2 8 9 1 2 cos 1 2 < 8 9 2 cos 1 2 1 < 8 9 1
101 63 99 39 100 mp3an 2 cos 1 2 < 8 9 2 cos 1 2 1 < 8 9 1
102 97 101 mpbi 2 cos 1 2 1 < 8 9 1
103 20 oveq2i 8 9 9 9 = 8 9 1
104 divneg 1 9 9 0 1 9 = 1 9
105 23 2 5 104 mp3an 1 9 = 1 9
106 8cn 8
107 2 106 negsubdi2i 9 8 = 8 9
108 8p1e9 8 + 1 = 9
109 2 106 23 108 subaddrii 9 8 = 1
110 109 negeqi 9 8 = 1
111 107 110 eqtr3i 8 9 = 1
112 111 oveq1i 8 9 9 = 1 9
113 divsubdir 8 9 9 9 0 8 9 9 = 8 9 9 9
114 106 2 9 113 mp3an 8 9 9 = 8 9 9 9
115 105 112 114 3eqtr2ri 8 9 9 9 = 1 9
116 103 115 eqtr3i 8 9 1 = 1 9
117 102 116 breqtri 2 cos 1 2 1 < 1 9
118 71 117 eqbrtri cos 2 < 1 9
119 72 118 pm3.2i 7 9 < cos 2 cos 2 < 1 9