Metamath Proof Explorer


Theorem cos2pim

Description: Cosine of a number subtracted from 2 x. _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion cos2pim A cos 2 π A = cos A

Proof

Step Hyp Ref Expression
1 negcl A A
2 1z 1
3 cosper A 1 cos - A + 1 2 π = cos A
4 1 2 3 sylancl A cos - A + 1 2 π = cos A
5 2cn 2
6 picn π
7 5 6 mulcli 2 π
8 7 mulid2i 1 2 π = 2 π
9 8 oveq2i - A + 1 2 π = - A + 2 π
10 negsubdi A 2 π A 2 π = - A + 2 π
11 negsubdi2 A 2 π A 2 π = 2 π A
12 10 11 eqtr3d A 2 π - A + 2 π = 2 π A
13 7 12 mpan2 A - A + 2 π = 2 π A
14 9 13 syl5eq A - A + 1 2 π = 2 π A
15 14 fveq2d A cos - A + 1 2 π = cos 2 π A
16 4 15 eqtr3d A cos A = cos 2 π A
17 cosneg A cos A = cos A
18 16 17 eqtr3d A cos 2 π A = cos A