Metamath Proof Explorer


Theorem cos2t

Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion cos2t A cos 2 A = 2 cos A 2 1

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 1 sqcld A cos A 2
3 ax-1cn 1
4 subsub3 cos A 2 1 cos A 2 cos A 2 1 cos A 2 = cos A 2 + cos A 2 - 1
5 3 4 mp3an2 cos A 2 cos A 2 cos A 2 1 cos A 2 = cos A 2 + cos A 2 - 1
6 2 2 5 syl2anc A cos A 2 1 cos A 2 = cos A 2 + cos A 2 - 1
7 cosadd A A cos A + A = cos A cos A sin A sin A
8 7 anidms A cos A + A = cos A cos A sin A sin A
9 2times A 2 A = A + A
10 9 fveq2d A cos 2 A = cos A + A
11 1 sqvald A cos A 2 = cos A cos A
12 sincl A sin A
13 12 sqvald A sin A 2 = sin A sin A
14 11 13 oveq12d A cos A 2 sin A 2 = cos A cos A sin A sin A
15 8 10 14 3eqtr4d A cos 2 A = cos A 2 sin A 2
16 12 sqcld A sin A 2
17 16 2 addcomd A sin A 2 + cos A 2 = cos A 2 + sin A 2
18 sincossq A sin A 2 + cos A 2 = 1
19 17 18 eqtr3d A cos A 2 + sin A 2 = 1
20 subadd 1 cos A 2 sin A 2 1 cos A 2 = sin A 2 cos A 2 + sin A 2 = 1
21 3 2 16 20 mp3an2i A 1 cos A 2 = sin A 2 cos A 2 + sin A 2 = 1
22 19 21 mpbird A 1 cos A 2 = sin A 2
23 22 oveq2d A cos A 2 1 cos A 2 = cos A 2 sin A 2
24 15 23 eqtr4d A cos 2 A = cos A 2 1 cos A 2
25 2 2timesd A 2 cos A 2 = cos A 2 + cos A 2
26 25 oveq1d A 2 cos A 2 1 = cos A 2 + cos A 2 - 1
27 6 24 26 3eqtr4d A cos 2 A = 2 cos A 2 1