Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|
2 |
|
cosval |
|
3 |
1 2
|
syl |
|
4 |
|
coscl |
|
5 |
4
|
adantr |
|
6 |
|
coscl |
|
7 |
6
|
adantl |
|
8 |
5 7
|
mulcld |
|
9 |
|
ax-icn |
|
10 |
|
sincl |
|
11 |
10
|
adantl |
|
12 |
|
mulcl |
|
13 |
9 11 12
|
sylancr |
|
14 |
|
sincl |
|
15 |
14
|
adantr |
|
16 |
|
mulcl |
|
17 |
9 15 16
|
sylancr |
|
18 |
13 17
|
mulcld |
|
19 |
8 18
|
addcld |
|
20 |
5 13
|
mulcld |
|
21 |
7 17
|
mulcld |
|
22 |
20 21
|
addcld |
|
23 |
19 22 19
|
ppncand |
|
24 |
|
adddi |
|
25 |
9 24
|
mp3an1 |
|
26 |
25
|
fveq2d |
|
27 |
|
simpl |
|
28 |
|
mulcl |
|
29 |
9 27 28
|
sylancr |
|
30 |
|
simpr |
|
31 |
|
mulcl |
|
32 |
9 30 31
|
sylancr |
|
33 |
|
efadd |
|
34 |
29 32 33
|
syl2anc |
|
35 |
|
efival |
|
36 |
|
efival |
|
37 |
35 36
|
oveqan12d |
|
38 |
5 17 7 13
|
muladdd |
|
39 |
37 38
|
eqtrd |
|
40 |
26 34 39
|
3eqtrd |
|
41 |
|
negicn |
|
42 |
|
adddi |
|
43 |
41 42
|
mp3an1 |
|
44 |
43
|
fveq2d |
|
45 |
|
mulcl |
|
46 |
41 27 45
|
sylancr |
|
47 |
|
mulcl |
|
48 |
41 30 47
|
sylancr |
|
49 |
|
efadd |
|
50 |
46 48 49
|
syl2anc |
|
51 |
|
efmival |
|
52 |
|
efmival |
|
53 |
51 52
|
oveqan12d |
|
54 |
5 17 7 13
|
mulsubd |
|
55 |
53 54
|
eqtrd |
|
56 |
44 50 55
|
3eqtrd |
|
57 |
40 56
|
oveq12d |
|
58 |
19
|
2timesd |
|
59 |
23 57 58
|
3eqtr4d |
|
60 |
59
|
oveq1d |
|
61 |
|
2cn |
|
62 |
|
2ne0 |
|
63 |
|
divcan3 |
|
64 |
61 62 63
|
mp3an23 |
|
65 |
19 64
|
syl |
|
66 |
9
|
a1i |
|
67 |
66 11 66 15
|
mul4d |
|
68 |
|
ixi |
|
69 |
68
|
oveq1i |
|
70 |
11 15
|
mulcomd |
|
71 |
70
|
oveq2d |
|
72 |
69 71
|
eqtrid |
|
73 |
15 11
|
mulcld |
|
74 |
73
|
mulm1d |
|
75 |
67 72 74
|
3eqtrd |
|
76 |
75
|
oveq2d |
|
77 |
8 73
|
negsubd |
|
78 |
65 76 77
|
3eqtrd |
|
79 |
3 60 78
|
3eqtrd |
|