Step |
Hyp |
Ref |
Expression |
1 |
|
cosargd.1 |
|
2 |
|
cosargd.2 |
|
3 |
1
|
cjcld |
|
4 |
1 3
|
addcld |
|
5 |
1
|
abscld |
|
6 |
5
|
recnd |
|
7 |
|
2cnd |
|
8 |
1 2
|
absne0d |
|
9 |
|
2ne0 |
|
10 |
9
|
a1i |
|
11 |
4 6 7 8 10
|
divdiv32d |
|
12 |
1 2
|
logcld |
|
13 |
12
|
imcld |
|
14 |
13
|
recnd |
|
15 |
|
cosval |
|
16 |
14 15
|
syl |
|
17 |
|
efiarg |
|
18 |
1 2 17
|
syl2anc |
|
19 |
|
ax-icn |
|
20 |
19
|
a1i |
|
21 |
20 14
|
mulcld |
|
22 |
|
efcj |
|
23 |
21 22
|
syl |
|
24 |
20 14
|
cjmuld |
|
25 |
|
cji |
|
26 |
25
|
a1i |
|
27 |
13
|
cjred |
|
28 |
26 27
|
oveq12d |
|
29 |
24 28
|
eqtrd |
|
30 |
29
|
fveq2d |
|
31 |
18
|
fveq2d |
|
32 |
23 30 31
|
3eqtr3d |
|
33 |
1 6 8
|
cjdivd |
|
34 |
5
|
cjred |
|
35 |
34
|
oveq2d |
|
36 |
32 33 35
|
3eqtrd |
|
37 |
18 36
|
oveq12d |
|
38 |
1 3 6 8
|
divdird |
|
39 |
37 38
|
eqtr4d |
|
40 |
39
|
oveq1d |
|
41 |
16 40
|
eqtrd |
|
42 |
|
reval |
|
43 |
1 42
|
syl |
|
44 |
43
|
oveq1d |
|
45 |
11 41 44
|
3eqtr4d |
|