Metamath Proof Explorer


Theorem cosargd

Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses cosargd.1 φ X
cosargd.2 φ X 0
Assertion cosargd φ cos log X = X X

Proof

Step Hyp Ref Expression
1 cosargd.1 φ X
2 cosargd.2 φ X 0
3 1 cjcld φ X
4 1 3 addcld φ X + X
5 1 abscld φ X
6 5 recnd φ X
7 2cnd φ 2
8 1 2 absne0d φ X 0
9 2ne0 2 0
10 9 a1i φ 2 0
11 4 6 7 8 10 divdiv32d φ X + X X 2 = X + X 2 X
12 1 2 logcld φ log X
13 12 imcld φ log X
14 13 recnd φ log X
15 cosval log X cos log X = e i log X + e i log X 2
16 14 15 syl φ cos log X = e i log X + e i log X 2
17 efiarg X X 0 e i log X = X X
18 1 2 17 syl2anc φ e i log X = X X
19 ax-icn i
20 19 a1i φ i
21 20 14 mulcld φ i log X
22 efcj i log X e i log X = e i log X
23 21 22 syl φ e i log X = e i log X
24 20 14 cjmuld φ i log X = i log X
25 cji i = i
26 25 a1i φ i = i
27 13 cjred φ log X = log X
28 26 27 oveq12d φ i log X = i log X
29 24 28 eqtrd φ i log X = i log X
30 29 fveq2d φ e i log X = e i log X
31 18 fveq2d φ e i log X = X X
32 23 30 31 3eqtr3d φ e i log X = X X
33 1 6 8 cjdivd φ X X = X X
34 5 cjred φ X = X
35 34 oveq2d φ X X = X X
36 32 33 35 3eqtrd φ e i log X = X X
37 18 36 oveq12d φ e i log X + e i log X = X X + X X
38 1 3 6 8 divdird φ X + X X = X X + X X
39 37 38 eqtr4d φ e i log X + e i log X = X + X X
40 39 oveq1d φ e i log X + e i log X 2 = X + X X 2
41 16 40 eqtrd φ cos log X = X + X X 2
42 reval X X = X + X 2
43 1 42 syl φ X = X + X 2
44 43 oveq1d φ X X = X + X 2 X
45 11 41 44 3eqtr4d φ cos log X = X X