| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosargd.1 |
|
| 2 |
|
cosargd.2 |
|
| 3 |
1
|
cjcld |
|
| 4 |
1 3
|
addcld |
|
| 5 |
1
|
abscld |
|
| 6 |
5
|
recnd |
|
| 7 |
|
2cnd |
|
| 8 |
1 2
|
absne0d |
|
| 9 |
|
2ne0 |
|
| 10 |
9
|
a1i |
|
| 11 |
4 6 7 8 10
|
divdiv32d |
|
| 12 |
1 2
|
logcld |
|
| 13 |
12
|
imcld |
|
| 14 |
13
|
recnd |
|
| 15 |
|
cosval |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
efiarg |
|
| 18 |
1 2 17
|
syl2anc |
|
| 19 |
|
ax-icn |
|
| 20 |
19
|
a1i |
|
| 21 |
20 14
|
mulcld |
|
| 22 |
|
efcj |
|
| 23 |
21 22
|
syl |
|
| 24 |
20 14
|
cjmuld |
|
| 25 |
|
cji |
|
| 26 |
25
|
a1i |
|
| 27 |
13
|
cjred |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
24 28
|
eqtrd |
|
| 30 |
29
|
fveq2d |
|
| 31 |
18
|
fveq2d |
|
| 32 |
23 30 31
|
3eqtr3d |
|
| 33 |
1 6 8
|
cjdivd |
|
| 34 |
5
|
cjred |
|
| 35 |
34
|
oveq2d |
|
| 36 |
32 33 35
|
3eqtrd |
|
| 37 |
18 36
|
oveq12d |
|
| 38 |
1 3 6 8
|
divdird |
|
| 39 |
37 38
|
eqtr4d |
|
| 40 |
39
|
oveq1d |
|
| 41 |
16 40
|
eqtrd |
|
| 42 |
|
reval |
|
| 43 |
1 42
|
syl |
|
| 44 |
43
|
oveq1d |
|
| 45 |
11 41 44
|
3eqtr4d |
|