Metamath Proof Explorer


Theorem cosasin

Description: The cosine of the arcsine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion cosasin A cos arcsin A = 1 A 2

Proof

Step Hyp Ref Expression
1 asincl A arcsin A
2 cosval arcsin A cos arcsin A = e i arcsin A + e i arcsin A 2
3 1 2 syl A cos arcsin A = e i arcsin A + e i arcsin A 2
4 ax-1cn 1
5 sqcl A A 2
6 subcl 1 A 2 1 A 2
7 4 5 6 sylancr A 1 A 2
8 7 sqrtcld A 1 A 2
9 ax-icn i
10 mulcl i A i A
11 9 10 mpan A i A
12 8 11 8 ppncand A 1 A 2 + i A + 1 A 2 i A = 1 A 2 + 1 A 2
13 efiasin A e i arcsin A = i A + 1 A 2
14 11 8 13 comraddd A e i arcsin A = 1 A 2 + i A
15 mulneg12 i arcsin A i arcsin A = i arcsin A
16 9 1 15 sylancr A i arcsin A = i arcsin A
17 asinneg A arcsin A = arcsin A
18 17 oveq2d A i arcsin A = i arcsin A
19 16 18 eqtr4d A i arcsin A = i arcsin A
20 19 fveq2d A e i arcsin A = e i arcsin A
21 negcl A A
22 efiasin A e i arcsin A = i A + 1 A 2
23 21 22 syl A e i arcsin A = i A + 1 A 2
24 mulneg2 i A i A = i A
25 9 24 mpan A i A = i A
26 sqneg A A 2 = A 2
27 26 oveq2d A 1 A 2 = 1 A 2
28 27 fveq2d A 1 A 2 = 1 A 2
29 25 28 oveq12d A i A + 1 A 2 = - i A + 1 A 2
30 20 23 29 3eqtrd A e i arcsin A = - i A + 1 A 2
31 11 negcld A i A
32 31 8 addcomd A - i A + 1 A 2 = 1 A 2 + i A
33 8 11 negsubd A 1 A 2 + i A = 1 A 2 i A
34 30 32 33 3eqtrd A e i arcsin A = 1 A 2 i A
35 14 34 oveq12d A e i arcsin A + e i arcsin A = 1 A 2 + i A + 1 A 2 i A
36 8 2timesd A 2 1 A 2 = 1 A 2 + 1 A 2
37 12 35 36 3eqtr4d A e i arcsin A + e i arcsin A = 2 1 A 2
38 37 oveq1d A e i arcsin A + e i arcsin A 2 = 2 1 A 2 2
39 2cnd A 2
40 2ne0 2 0
41 40 a1i A 2 0
42 8 39 41 divcan3d A 2 1 A 2 2 = 1 A 2
43 3 38 42 3eqtrd A cos arcsin A = 1 A 2