Step |
Hyp |
Ref |
Expression |
1 |
|
asincl |
|
2 |
|
cosval |
|
3 |
1 2
|
syl |
|
4 |
|
ax-1cn |
|
5 |
|
sqcl |
|
6 |
|
subcl |
|
7 |
4 5 6
|
sylancr |
|
8 |
7
|
sqrtcld |
|
9 |
|
ax-icn |
|
10 |
|
mulcl |
|
11 |
9 10
|
mpan |
|
12 |
8 11 8
|
ppncand |
|
13 |
|
efiasin |
|
14 |
11 8 13
|
comraddd |
|
15 |
|
mulneg12 |
|
16 |
9 1 15
|
sylancr |
|
17 |
|
asinneg |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
eqtr4d |
|
20 |
19
|
fveq2d |
|
21 |
|
negcl |
|
22 |
|
efiasin |
|
23 |
21 22
|
syl |
|
24 |
|
mulneg2 |
|
25 |
9 24
|
mpan |
|
26 |
|
sqneg |
|
27 |
26
|
oveq2d |
|
28 |
27
|
fveq2d |
|
29 |
25 28
|
oveq12d |
|
30 |
20 23 29
|
3eqtrd |
|
31 |
11
|
negcld |
|
32 |
31 8
|
addcomd |
|
33 |
8 11
|
negsubd |
|
34 |
30 32 33
|
3eqtrd |
|
35 |
14 34
|
oveq12d |
|
36 |
8
|
2timesd |
|
37 |
12 35 36
|
3eqtr4d |
|
38 |
37
|
oveq1d |
|
39 |
|
2cnd |
|
40 |
|
2ne0 |
|
41 |
40
|
a1i |
|
42 |
8 39 41
|
divcan3d |
|
43 |
3 38 42
|
3eqtrd |
|