Metamath Proof Explorer


Theorem cosatanne0

Description: The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion cosatanne0 A dom arctan cos arctan A 0

Proof

Step Hyp Ref Expression
1 cosatan A dom arctan cos arctan A = 1 1 + A 2
2 ax-1cn 1
3 atandm4 A dom arctan A 1 + A 2 0
4 3 simplbi A dom arctan A
5 4 sqcld A dom arctan A 2
6 addcl 1 A 2 1 + A 2
7 2 5 6 sylancr A dom arctan 1 + A 2
8 7 sqrtcld A dom arctan 1 + A 2
9 7 sqsqrtd A dom arctan 1 + A 2 2 = 1 + A 2
10 3 simprbi A dom arctan 1 + A 2 0
11 9 10 eqnetrd A dom arctan 1 + A 2 2 0
12 sqne0 1 + A 2 1 + A 2 2 0 1 + A 2 0
13 8 12 syl A dom arctan 1 + A 2 2 0 1 + A 2 0
14 11 13 mpbid A dom arctan 1 + A 2 0
15 8 14 recne0d A dom arctan 1 1 + A 2 0
16 1 15 eqnetrd A dom arctan cos arctan A 0