Metamath Proof Explorer


Theorem coseq0

Description: A complex number whose cosine is zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion coseq0 A cos A = 0 A π + 1 2

Proof

Step Hyp Ref Expression
1 picn π
2 1 a1i A π
3 2 halfcld A π 2
4 id A A
5 3 4 addcld A π 2 + A
6 sineq0 π 2 + A sin π 2 + A = 0 π 2 + A π
7 5 6 syl A sin π 2 + A = 0 π 2 + A π
8 sinhalfpip A sin π 2 + A = cos A
9 8 eqeq1d A sin π 2 + A = 0 cos A = 0
10 pire π
11 pipos 0 < π
12 10 11 gt0ne0ii π 0
13 12 a1i A π 0
14 3 4 2 13 divdird A π 2 + A π = π 2 π + A π
15 2cnd A 2
16 2ne0 2 0
17 16 a1i A 2 0
18 2 15 2 17 13 divdiv32d A π 2 π = π π 2
19 2 13 dividd A π π = 1
20 19 oveq1d A π π 2 = 1 2
21 18 20 eqtrd A π 2 π = 1 2
22 21 oveq1d A π 2 π + A π = 1 2 + A π
23 1cnd A 1
24 23 halfcld A 1 2
25 4 2 13 divcld A A π
26 24 25 addcomd A 1 2 + A π = A π + 1 2
27 14 22 26 3eqtrd A π 2 + A π = A π + 1 2
28 27 eleq1d A π 2 + A π A π + 1 2
29 7 9 28 3bitr3d A cos A = 0 A π + 1 2