Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
simpl |
|
3 |
|
0re |
|
4 |
|
pire |
|
5 |
3 4
|
elicc2i |
|
6 |
2 5
|
sylib |
|
7 |
6
|
simp1d |
|
8 |
7
|
ad2antrr |
|
9 |
|
simpr |
|
10 |
|
simplr |
|
11 |
3
|
rexri |
|
12 |
|
halfpire |
|
13 |
12
|
rexri |
|
14 |
|
elioo2 |
|
15 |
11 13 14
|
mp2an |
|
16 |
8 9 10 15
|
syl3anbrc |
|
17 |
|
sincosq1sgn |
|
18 |
16 17
|
syl |
|
19 |
18
|
simprd |
|
20 |
19
|
gt0ne0d |
|
21 |
|
simpr |
|
22 |
21
|
fveq2d |
|
23 |
|
cos0 |
|
24 |
22 23
|
eqtr3di |
|
25 |
|
ax-1ne0 |
|
26 |
25
|
a1i |
|
27 |
24 26
|
eqnetrd |
|
28 |
6
|
simp2d |
|
29 |
|
0red |
|
30 |
29 7
|
leloed |
|
31 |
28 30
|
mpbid |
|
32 |
31
|
adantr |
|
33 |
20 27 32
|
mpjaodan |
|
34 |
1 33
|
pm2.21ddne |
|
35 |
|
simpr |
|
36 |
|
simplr |
|
37 |
7
|
ad2antrr |
|
38 |
|
simplr |
|
39 |
|
simpr |
|
40 |
4
|
rexri |
|
41 |
|
elioo2 |
|
42 |
13 40 41
|
mp2an |
|
43 |
37 38 39 42
|
syl3anbrc |
|
44 |
|
sincosq2sgn |
|
45 |
43 44
|
syl |
|
46 |
45
|
simprd |
|
47 |
46
|
lt0ne0d |
|
48 |
|
simpr |
|
49 |
48
|
fveq2d |
|
50 |
|
cospi |
|
51 |
49 50
|
eqtrdi |
|
52 |
|
neg1ne0 |
|
53 |
52
|
a1i |
|
54 |
51 53
|
eqnetrd |
|
55 |
6
|
simp3d |
|
56 |
4
|
a1i |
|
57 |
7 56
|
leloed |
|
58 |
55 57
|
mpbid |
|
59 |
58
|
adantr |
|
60 |
47 54 59
|
mpjaodan |
|
61 |
36 60
|
pm2.21ddne |
|
62 |
56
|
rehalfcld |
|
63 |
7 62
|
lttri4d |
|
64 |
34 35 61 63
|
mpjao3dan |
|
65 |
|
fveq2 |
|
66 |
|
coshalfpi |
|
67 |
65 66
|
eqtrdi |
|
68 |
67
|
adantl |
|
69 |
64 68
|
impbida |
|