Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
pire |
|
3 |
2
|
renegcli |
|
4 |
3
|
rexri |
|
5 |
|
elioc2 |
|
6 |
4 2 5
|
mp2an |
|
7 |
1 6
|
sylib |
|
8 |
7
|
simp1d |
|
9 |
|
0re |
|
10 |
9
|
a1i |
|
11 |
8
|
adantr |
|
12 |
11
|
recnd |
|
13 |
8
|
recnd |
|
14 |
13
|
adantr |
|
15 |
|
cosneg |
|
16 |
14 15
|
syl |
|
17 |
|
simplr |
|
18 |
16 17
|
eqtrd |
|
19 |
8
|
renegcld |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
11
|
le0neg1d |
|
23 |
21 22
|
mpbid |
|
24 |
2
|
a1i |
|
25 |
7
|
simp2d |
|
26 |
24 8 25
|
ltnegcon1d |
|
27 |
19 24 26
|
ltled |
|
28 |
27
|
adantr |
|
29 |
9 2
|
elicc2i |
|
30 |
20 23 28 29
|
syl3anbrc |
|
31 |
|
coseq00topi |
|
32 |
30 31
|
syl |
|
33 |
18 32
|
mpbid |
|
34 |
12 33
|
negcon1ad |
|
35 |
34
|
eqcomd |
|
36 |
|
halfpire |
|
37 |
36
|
renegcli |
|
38 |
|
prid2g |
|
39 |
|
eleq1a |
|
40 |
37 38 39
|
mp2b |
|
41 |
35 40
|
syl |
|
42 |
|
simplr |
|
43 |
8
|
adantr |
|
44 |
|
simpr |
|
45 |
7
|
simp3d |
|
46 |
45
|
adantr |
|
47 |
9 2
|
elicc2i |
|
48 |
43 44 46 47
|
syl3anbrc |
|
49 |
|
coseq00topi |
|
50 |
48 49
|
syl |
|
51 |
42 50
|
mpbid |
|
52 |
|
prid1g |
|
53 |
|
eleq1a |
|
54 |
36 52 53
|
mp2b |
|
55 |
51 54
|
syl |
|
56 |
8 10 41 55
|
lecasei |
|
57 |
|
elpri |
|
58 |
|
fveq2 |
|
59 |
|
coshalfpi |
|
60 |
58 59
|
eqtrdi |
|
61 |
|
fveq2 |
|
62 |
|
cosneghalfpi |
|
63 |
61 62
|
eqtrdi |
|
64 |
60 63
|
jaoi |
|
65 |
57 64
|
syl |
|
66 |
65
|
adantl |
|
67 |
56 66
|
impbida |
|