Metamath Proof Explorer


Theorem coseq0negpitopi

Description: Location of the zeroes of cosine in ( -upi (,] pi ) . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion coseq0negpitopi A π π cos A = 0 A π 2 π 2

Proof

Step Hyp Ref Expression
1 simpl A π π cos A = 0 A π π
2 pire π
3 2 renegcli π
4 3 rexri π *
5 elioc2 π * π A π π A π < A A π
6 4 2 5 mp2an A π π A π < A A π
7 1 6 sylib A π π cos A = 0 A π < A A π
8 7 simp1d A π π cos A = 0 A
9 0re 0
10 9 a1i A π π cos A = 0 0
11 8 adantr A π π cos A = 0 A 0 A
12 11 recnd A π π cos A = 0 A 0 A
13 8 recnd A π π cos A = 0 A
14 13 adantr A π π cos A = 0 A 0 A
15 cosneg A cos A = cos A
16 14 15 syl A π π cos A = 0 A 0 cos A = cos A
17 simplr A π π cos A = 0 A 0 cos A = 0
18 16 17 eqtrd A π π cos A = 0 A 0 cos A = 0
19 8 renegcld A π π cos A = 0 A
20 19 adantr A π π cos A = 0 A 0 A
21 simpr A π π cos A = 0 A 0 A 0
22 11 le0neg1d A π π cos A = 0 A 0 A 0 0 A
23 21 22 mpbid A π π cos A = 0 A 0 0 A
24 2 a1i A π π cos A = 0 π
25 7 simp2d A π π cos A = 0 π < A
26 24 8 25 ltnegcon1d A π π cos A = 0 A < π
27 19 24 26 ltled A π π cos A = 0 A π
28 27 adantr A π π cos A = 0 A 0 A π
29 9 2 elicc2i A 0 π A 0 A A π
30 20 23 28 29 syl3anbrc A π π cos A = 0 A 0 A 0 π
31 coseq00topi A 0 π cos A = 0 A = π 2
32 30 31 syl A π π cos A = 0 A 0 cos A = 0 A = π 2
33 18 32 mpbid A π π cos A = 0 A 0 A = π 2
34 12 33 negcon1ad A π π cos A = 0 A 0 π 2 = A
35 34 eqcomd A π π cos A = 0 A 0 A = π 2
36 halfpire π 2
37 36 renegcli π 2
38 prid2g π 2 π 2 π 2 π 2
39 eleq1a π 2 π 2 π 2 A = π 2 A π 2 π 2
40 37 38 39 mp2b A = π 2 A π 2 π 2
41 35 40 syl A π π cos A = 0 A 0 A π 2 π 2
42 simplr A π π cos A = 0 0 A cos A = 0
43 8 adantr A π π cos A = 0 0 A A
44 simpr A π π cos A = 0 0 A 0 A
45 7 simp3d A π π cos A = 0 A π
46 45 adantr A π π cos A = 0 0 A A π
47 9 2 elicc2i A 0 π A 0 A A π
48 43 44 46 47 syl3anbrc A π π cos A = 0 0 A A 0 π
49 coseq00topi A 0 π cos A = 0 A = π 2
50 48 49 syl A π π cos A = 0 0 A cos A = 0 A = π 2
51 42 50 mpbid A π π cos A = 0 0 A A = π 2
52 prid1g π 2 π 2 π 2 π 2
53 eleq1a π 2 π 2 π 2 A = π 2 A π 2 π 2
54 36 52 53 mp2b A = π 2 A π 2 π 2
55 51 54 syl A π π cos A = 0 0 A A π 2 π 2
56 8 10 41 55 lecasei A π π cos A = 0 A π 2 π 2
57 elpri A π 2 π 2 A = π 2 A = π 2
58 fveq2 A = π 2 cos A = cos π 2
59 coshalfpi cos π 2 = 0
60 58 59 eqtrdi A = π 2 cos A = 0
61 fveq2 A = π 2 cos A = cos π 2
62 cosneghalfpi cos π 2 = 0
63 61 62 eqtrdi A = π 2 cos A = 0
64 60 63 jaoi A = π 2 A = π 2 cos A = 0
65 57 64 syl A π 2 π 2 cos A = 0
66 65 adantl A π π A π 2 π 2 cos A = 0
67 56 66 impbida A π π cos A = 0 A π 2 π 2