Metamath Proof Explorer


Theorem cosf

Description: Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion cosf cos :

Proof

Step Hyp Ref Expression
1 df-cos cos = x e i x + e i x 2
2 ax-icn i
3 mulcl i x i x
4 2 3 mpan x i x
5 efcl i x e i x
6 4 5 syl x e i x
7 negicn i
8 mulcl i x i x
9 7 8 mpan x i x
10 efcl i x e i x
11 9 10 syl x e i x
12 6 11 addcld x e i x + e i x
13 12 halfcld x e i x + e i x 2
14 1 13 fmpti cos :