Metamath Proof Explorer


Theorem coshalfpim

Description: The cosine of _pi / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion coshalfpim A cos π 2 A = sin A

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 1 recni π 2
3 cossub π 2 A cos π 2 A = cos π 2 cos A + sin π 2 sin A
4 2 3 mpan A cos π 2 A = cos π 2 cos A + sin π 2 sin A
5 coshalfpi cos π 2 = 0
6 5 oveq1i cos π 2 cos A = 0 cos A
7 coscl A cos A
8 7 mul02d A 0 cos A = 0
9 6 8 syl5eq A cos π 2 cos A = 0
10 sinhalfpi sin π 2 = 1
11 10 oveq1i sin π 2 sin A = 1 sin A
12 sincl A sin A
13 12 mulid2d A 1 sin A = sin A
14 11 13 syl5eq A sin π 2 sin A = sin A
15 9 14 oveq12d A cos π 2 cos A + sin π 2 sin A = 0 + sin A
16 12 addid2d A 0 + sin A = sin A
17 4 15 16 3eqtrd A cos π 2 A = sin A