Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
coshalfpip
Next ⟩
coshalfpim
Metamath Proof Explorer
Ascii
Unicode
Theorem
coshalfpip
Description:
The cosine of
_pi / 2
plus a number.
(Contributed by
Paul Chapman
, 24-Jan-2008)
Ref
Expression
Assertion
coshalfpip
⊢
A
∈
ℂ
→
cos
⁡
π
2
+
A
=
−
sin
⁡
A
Proof
Step
Hyp
Ref
Expression
1
coshalfpi
⊢
cos
⁡
π
2
=
0
2
1
oveq1i
⊢
cos
⁡
π
2
⁢
cos
⁡
A
=
0
⋅
cos
⁡
A
3
coscl
⊢
A
∈
ℂ
→
cos
⁡
A
∈
ℂ
4
3
mul02d
⊢
A
∈
ℂ
→
0
⋅
cos
⁡
A
=
0
5
2
4
syl5eq
⊢
A
∈
ℂ
→
cos
⁡
π
2
⁢
cos
⁡
A
=
0
6
sinhalfpi
⊢
sin
⁡
π
2
=
1
7
6
oveq1i
⊢
sin
⁡
π
2
⁢
sin
⁡
A
=
1
⁢
sin
⁡
A
8
sincl
⊢
A
∈
ℂ
→
sin
⁡
A
∈
ℂ
9
8
mulid2d
⊢
A
∈
ℂ
→
1
⁢
sin
⁡
A
=
sin
⁡
A
10
7
9
syl5eq
⊢
A
∈
ℂ
→
sin
⁡
π
2
⁢
sin
⁡
A
=
sin
⁡
A
11
5
10
oveq12d
⊢
A
∈
ℂ
→
cos
⁡
π
2
⁢
cos
⁡
A
−
sin
⁡
π
2
⁢
sin
⁡
A
=
0
−
sin
⁡
A
12
halfpire
⊢
π
2
∈
ℝ
13
12
recni
⊢
π
2
∈
ℂ
14
cosadd
⊢
π
2
∈
ℂ
∧
A
∈
ℂ
→
cos
⁡
π
2
+
A
=
cos
⁡
π
2
⁢
cos
⁡
A
−
sin
⁡
π
2
⁢
sin
⁡
A
15
13
14
mpan
⊢
A
∈
ℂ
→
cos
⁡
π
2
+
A
=
cos
⁡
π
2
⁢
cos
⁡
A
−
sin
⁡
π
2
⁢
sin
⁡
A
16
df-neg
⊢
−
sin
⁡
A
=
0
−
sin
⁡
A
17
16
a1i
⊢
A
∈
ℂ
→
−
sin
⁡
A
=
0
−
sin
⁡
A
18
11
15
17
3eqtr4d
⊢
A
∈
ℂ
→
cos
⁡
π
2
+
A
=
−
sin
⁡
A