Metamath Proof Explorer


Theorem coshalfpip

Description: The cosine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion coshalfpip A cos π 2 + A = sin A

Proof

Step Hyp Ref Expression
1 coshalfpi cos π 2 = 0
2 1 oveq1i cos π 2 cos A = 0 cos A
3 coscl A cos A
4 3 mul02d A 0 cos A = 0
5 2 4 syl5eq A cos π 2 cos A = 0
6 sinhalfpi sin π 2 = 1
7 6 oveq1i sin π 2 sin A = 1 sin A
8 sincl A sin A
9 8 mulid2d A 1 sin A = sin A
10 7 9 syl5eq A sin π 2 sin A = sin A
11 5 10 oveq12d A cos π 2 cos A sin π 2 sin A = 0 sin A
12 halfpire π 2
13 12 recni π 2
14 cosadd π 2 A cos π 2 + A = cos π 2 cos A sin π 2 sin A
15 13 14 mpan A cos π 2 + A = cos π 2 cos A sin π 2 sin A
16 df-neg sin A = 0 sin A
17 16 a1i A sin A = 0 sin A
18 11 15 17 3eqtr4d A cos π 2 + A = sin A