Metamath Proof Explorer


Theorem coshval

Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion coshval A cos i A = e A + e A 2

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl i A i A
3 1 2 mpan A i A
4 cosval i A cos i A = e i i A + e i i A 2
5 3 4 syl A cos i A = e i i A + e i i A 2
6 negcl A A
7 efcl A e A
8 6 7 syl A e A
9 efcl A e A
10 ixi i i = 1
11 10 oveq1i i i A = -1 A
12 mulass i i A i i A = i i A
13 1 1 12 mp3an12 A i i A = i i A
14 mulm1 A -1 A = A
15 11 13 14 3eqtr3a A i i A = A
16 15 fveq2d A e i i A = e A
17 1 1 mulneg1i i i = i i
18 10 negeqi i i = -1
19 negneg1e1 -1 = 1
20 17 18 19 3eqtri i i = 1
21 20 oveq1i i i A = 1 A
22 negicn i
23 mulass i i A i i A = i i A
24 22 1 23 mp3an12 A i i A = i i A
25 mulid2 A 1 A = A
26 21 24 25 3eqtr3a A i i A = A
27 26 fveq2d A e i i A = e A
28 16 27 oveq12d A e i i A + e i i A = e A + e A
29 8 9 28 comraddd A e i i A + e i i A = e A + e A
30 29 oveq1d A e i i A + e i i A 2 = e A + e A 2
31 5 30 eqtrd A cos i A = e A + e A 2