Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
2z |
|
3 |
|
simpl |
|
4 |
|
divides |
|
5 |
2 3 4
|
sylancr |
|
6 |
1 5
|
mpbid |
|
7 |
|
zcn |
|
8 |
|
negcl |
|
9 |
|
2cn |
|
10 |
|
picn |
|
11 |
9 10
|
mulcli |
|
12 |
11
|
a1i |
|
13 |
8 12
|
mulcld |
|
14 |
13
|
addid2d |
|
15 |
|
2cnd |
|
16 |
10
|
a1i |
|
17 |
8 15 16
|
mulassd |
|
18 |
17
|
eqcomd |
|
19 |
|
id |
|
20 |
19 15
|
mulneg1d |
|
21 |
20
|
oveq1d |
|
22 |
14 18 21
|
3eqtrd |
|
23 |
7 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
19 15
|
mulcld |
|
26 |
|
mulneg12 |
|
27 |
25 16 26
|
syl2anc |
|
28 |
7 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
|
oveq1 |
|
31 |
30
|
adantl |
|
32 |
24 29 31
|
3eqtrrd |
|
33 |
32
|
fveq2d |
|
34 |
33
|
3adant1 |
|
35 |
|
0cnd |
|
36 |
|
znegcl |
|
37 |
|
cosper |
|
38 |
35 36 37
|
syl2anc |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
cos0 |
|
41 |
|
iftrue |
|
42 |
40 41
|
eqtr4id |
|
43 |
42
|
3ad2ant1 |
|
44 |
34 39 43
|
3eqtrd |
|
45 |
44
|
3exp |
|
46 |
45
|
adantl |
|
47 |
46
|
rexlimdv |
|
48 |
6 47
|
mpd |
|
49 |
|
odd2np1 |
|
50 |
49
|
biimpa |
|
51 |
|
oveq1 |
|
52 |
51
|
eqcomd |
|
53 |
52
|
adantl |
|
54 |
15 19
|
mulcld |
|
55 |
|
1cnd |
|
56 |
|
negpicn |
|
57 |
56
|
a1i |
|
58 |
54 55 57
|
adddird |
|
59 |
7 58
|
syl |
|
60 |
59
|
adantr |
|
61 |
|
mulneg12 |
|
62 |
54 16 61
|
syl2anc |
|
63 |
62
|
eqcomd |
|
64 |
15 19
|
mulneg2d |
|
65 |
15 8
|
mulcomd |
|
66 |
64 65
|
eqtr3d |
|
67 |
66
|
oveq1d |
|
68 |
63 67 17
|
3eqtrd |
|
69 |
57
|
mulid2d |
|
70 |
68 69
|
oveq12d |
|
71 |
13 57
|
addcomd |
|
72 |
70 71
|
eqtrd |
|
73 |
7 72
|
syl |
|
74 |
73
|
adantr |
|
75 |
53 60 74
|
3eqtrd |
|
76 |
75
|
3adant1 |
|
77 |
76
|
fveq2d |
|
78 |
77
|
3adant1r |
|
79 |
|
cosper |
|
80 |
56 36 79
|
sylancr |
|
81 |
80
|
3ad2ant2 |
|
82 |
|
cosnegpi |
|
83 |
|
iffalse |
|
84 |
82 83
|
eqtr4id |
|
85 |
84
|
adantl |
|
86 |
85
|
3ad2ant1 |
|
87 |
78 81 86
|
3eqtrd |
|
88 |
87
|
rexlimdv3a |
|
89 |
50 88
|
mpd |
|
90 |
48 89
|
pm2.61dan |
|