Metamath Proof Explorer


Theorem coskpi

Description: The absolute value of the cosine of an integer multiple of _pi is 1. (Contributed by NM, 19-Aug-2008)

Ref Expression
Assertion coskpi K cos K π = 1

Proof

Step Hyp Ref Expression
1 zcn K K
2 2cn 2
3 picn π
4 mul12 K 2 π K 2 π = 2 K π
5 2 3 4 mp3an23 K K 2 π = 2 K π
6 1 5 syl K K 2 π = 2 K π
7 6 fveq2d K cos K 2 π = cos 2 K π
8 cos2kpi K cos K 2 π = 1
9 zre K K
10 pire π
11 remulcl K π K π
12 9 10 11 sylancl K K π
13 12 recnd K K π
14 cos2t K π cos 2 K π = 2 cos K π 2 1
15 13 14 syl K cos 2 K π = 2 cos K π 2 1
16 7 8 15 3eqtr3rd K 2 cos K π 2 1 = 1
17 12 recoscld K cos K π
18 17 recnd K cos K π
19 18 sqcld K cos K π 2
20 mulcl 2 cos K π 2 2 cos K π 2
21 2 19 20 sylancr K 2 cos K π 2
22 ax-1cn 1
23 subadd 2 cos K π 2 1 1 2 cos K π 2 1 = 1 1 + 1 = 2 cos K π 2
24 22 22 23 mp3an23 2 cos K π 2 2 cos K π 2 1 = 1 1 + 1 = 2 cos K π 2
25 21 24 syl K 2 cos K π 2 1 = 1 1 + 1 = 2 cos K π 2
26 16 25 mpbid K 1 + 1 = 2 cos K π 2
27 2t1e2 2 1 = 2
28 df-2 2 = 1 + 1
29 27 28 eqtr2i 1 + 1 = 2 1
30 26 29 eqtr3di K 2 cos K π 2 = 2 1
31 2cnne0 2 2 0
32 mulcan cos K π 2 1 2 2 0 2 cos K π 2 = 2 1 cos K π 2 = 1
33 22 31 32 mp3an23 cos K π 2 2 cos K π 2 = 2 1 cos K π 2 = 1
34 19 33 syl K 2 cos K π 2 = 2 1 cos K π 2 = 1
35 30 34 mpbid K cos K π 2 = 1
36 sq1 1 2 = 1
37 35 36 eqtr4di K cos K π 2 = 1 2
38 1re 1
39 sqabs cos K π 1 cos K π 2 = 1 2 cos K π = 1
40 17 38 39 sylancl K cos K π 2 = 1 2 cos K π = 1
41 37 40 mpbid K cos K π = 1
42 abs1 1 = 1
43 41 42 eqtrdi K cos K π = 1