Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
divides |
|
3 |
1 2
|
mpan |
|
4 |
3
|
biimpa |
|
5 |
|
zcn |
|
6 |
|
2cnd |
|
7 |
|
picn |
|
8 |
7
|
a1i |
|
9 |
5 6 8
|
mulassd |
|
10 |
9
|
eqcomd |
|
11 |
10
|
adantr |
|
12 |
|
oveq1 |
|
13 |
12
|
adantl |
|
14 |
11 13
|
eqtr2d |
|
15 |
14
|
fveq2d |
|
16 |
|
cos2kpi |
|
17 |
16
|
adantr |
|
18 |
15 17
|
eqtrd |
|
19 |
18
|
3adant1 |
|
20 |
|
iftrue |
|
21 |
20
|
eqcomd |
|
22 |
21
|
3ad2ant1 |
|
23 |
19 22
|
eqtrd |
|
24 |
23
|
3exp |
|
25 |
24
|
adantl |
|
26 |
25
|
rexlimdv |
|
27 |
4 26
|
mpd |
|
28 |
|
odd2np1 |
|
29 |
28
|
biimpa |
|
30 |
6 5
|
mulcld |
|
31 |
|
1cnd |
|
32 |
30 31 8
|
adddird |
|
33 |
6 5
|
mulcomd |
|
34 |
33
|
oveq1d |
|
35 |
34 9
|
eqtrd |
|
36 |
7
|
mulid2i |
|
37 |
36
|
a1i |
|
38 |
35 37
|
oveq12d |
|
39 |
|
2cn |
|
40 |
39 7
|
mulcli |
|
41 |
40
|
a1i |
|
42 |
5 41
|
mulcld |
|
43 |
42 8
|
addcomd |
|
44 |
32 38 43
|
3eqtrrd |
|
45 |
44
|
adantr |
|
46 |
|
oveq1 |
|
47 |
46
|
adantl |
|
48 |
45 47
|
eqtr2d |
|
49 |
48
|
fveq2d |
|
50 |
|
cosper |
|
51 |
7 50
|
mpan |
|
52 |
51
|
adantr |
|
53 |
|
cospi |
|
54 |
53
|
a1i |
|
55 |
49 52 54
|
3eqtrd |
|
56 |
55
|
3adant1 |
|
57 |
|
iffalse |
|
58 |
57
|
eqcomd |
|
59 |
58
|
3ad2ant1 |
|
60 |
56 59
|
eqtrd |
|
61 |
60
|
3exp |
|
62 |
61
|
adantl |
|
63 |
62
|
rexlimdv |
|
64 |
29 63
|
mpd |
|
65 |
27 64
|
pm2.61dan |
|