Metamath Proof Explorer


Theorem cosmul

Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)

Ref Expression
Assertion cosmul A B cos A cos B = cos A B + cos A + B 2

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 coscl B cos B
3 mulcl cos A cos B cos A cos B
4 1 2 3 syl2an A B cos A cos B
5 2cnne0 2 2 0
6 3anass cos A cos B 2 2 0 cos A cos B 2 2 0
7 4 5 6 sylanblrc A B cos A cos B 2 2 0
8 divcan3 cos A cos B 2 2 0 2 cos A cos B 2 = cos A cos B
9 7 8 syl A B 2 cos A cos B 2 = cos A cos B
10 sincl A sin A
11 sincl B sin B
12 mulcl sin A sin B sin A sin B
13 10 11 12 syl2an A B sin A sin B
14 4 13 4 ppncand A B cos A cos B + sin A sin B + cos A cos B sin A sin B = cos A cos B + cos A cos B
15 cossub A B cos A B = cos A cos B + sin A sin B
16 cosadd A B cos A + B = cos A cos B sin A sin B
17 15 16 oveq12d A B cos A B + cos A + B = cos A cos B + sin A sin B + cos A cos B sin A sin B
18 4 2timesd A B 2 cos A cos B = cos A cos B + cos A cos B
19 14 17 18 3eqtr4rd A B 2 cos A cos B = cos A B + cos A + B
20 19 oveq1d A B 2 cos A cos B 2 = cos A B + cos A + B 2
21 9 20 eqtr3d A B cos A cos B = cos A B + cos A + B 2