Metamath Proof Explorer


Theorem cosne0

Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion cosne0 A A π 2 π 2 cos A 0

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 1 recni π 2
3 simpl A A π 2 π 2 A
4 nncan π 2 A π 2 π 2 A = A
5 2 3 4 sylancr A A π 2 π 2 π 2 π 2 A = A
6 5 fveq2d A A π 2 π 2 cos π 2 π 2 A = cos A
7 subcl π 2 A π 2 A
8 2 3 7 sylancr A A π 2 π 2 π 2 A
9 coshalfpim π 2 A cos π 2 π 2 A = sin π 2 A
10 8 9 syl A A π 2 π 2 cos π 2 π 2 A = sin π 2 A
11 6 10 eqtr3d A A π 2 π 2 cos A = sin π 2 A
12 5 adantr A A π 2 π 2 π 2 A π π 2 π 2 A = A
13 picn π
14 13 a1i A A π 2 π 2 π
15 pire π
16 pipos 0 < π
17 15 16 gt0ne0ii π 0
18 17 a1i A A π 2 π 2 π 0
19 8 14 18 divcan1d A A π 2 π 2 π 2 A π π = π 2 A
20 19 adantr A A π 2 π 2 π 2 A π π 2 A π π = π 2 A
21 zre π 2 A π π 2 A π
22 21 adantl A A π 2 π 2 π 2 A π π 2 A π
23 remulcl π 2 A π π π 2 A π π
24 22 15 23 sylancl A A π 2 π 2 π 2 A π π 2 A π π
25 20 24 eqeltrrd A A π 2 π 2 π 2 A π π 2 A
26 resubcl π 2 π 2 A π 2 π 2 A
27 1 25 26 sylancr A A π 2 π 2 π 2 A π π 2 π 2 A
28 12 27 eqeltrrd A A π 2 π 2 π 2 A π A
29 28 rered A A π 2 π 2 π 2 A π A = A
30 simplr A A π 2 π 2 π 2 A π A π 2 π 2
31 29 30 eqeltrrd A A π 2 π 2 π 2 A π A π 2 π 2
32 0zd A π 2 π 2 0
33 elioore A π 2 π 2 A
34 resubcl π 2 A π 2 A
35 1 33 34 sylancr A π 2 π 2 π 2 A
36 15 a1i A π 2 π 2 π
37 eliooord A π 2 π 2 π 2 < A A < π 2
38 37 simprd A π 2 π 2 A < π 2
39 posdif A π 2 A < π 2 0 < π 2 A
40 33 1 39 sylancl A π 2 π 2 A < π 2 0 < π 2 A
41 38 40 mpbid A π 2 π 2 0 < π 2 A
42 16 a1i A π 2 π 2 0 < π
43 35 36 41 42 divgt0d A π 2 π 2 0 < π 2 A π
44 1 a1i A π 2 π 2 π 2
45 2 negcli π 2
46 13 2 negsubi π + π 2 = π π 2
47 pidiv2halves π 2 + π 2 = π
48 13 2 2 47 subaddrii π π 2 = π 2
49 46 48 eqtri π + π 2 = π 2
50 2 13 45 49 subaddrii π 2 π = π 2
51 37 simpld A π 2 π 2 π 2 < A
52 50 51 eqbrtrid A π 2 π 2 π 2 π < A
53 44 36 33 52 ltsub23d A π 2 π 2 π 2 A < π
54 13 mulid1i π 1 = π
55 53 54 breqtrrdi A π 2 π 2 π 2 A < π 1
56 1red A π 2 π 2 1
57 ltdivmul π 2 A 1 π 0 < π π 2 A π < 1 π 2 A < π 1
58 35 56 36 42 57 syl112anc A π 2 π 2 π 2 A π < 1 π 2 A < π 1
59 55 58 mpbird A π 2 π 2 π 2 A π < 1
60 1e0p1 1 = 0 + 1
61 59 60 breqtrdi A π 2 π 2 π 2 A π < 0 + 1
62 btwnnz 0 0 < π 2 A π π 2 A π < 0 + 1 ¬ π 2 A π
63 32 43 61 62 syl3anc A π 2 π 2 ¬ π 2 A π
64 31 63 syl A A π 2 π 2 π 2 A π ¬ π 2 A π
65 64 pm2.01da A A π 2 π 2 ¬ π 2 A π
66 sineq0 π 2 A sin π 2 A = 0 π 2 A π
67 8 66 syl A A π 2 π 2 sin π 2 A = 0 π 2 A π
68 67 necon3abid A A π 2 π 2 sin π 2 A 0 ¬ π 2 A π
69 65 68 mpbird A A π 2 π 2 sin π 2 A 0
70 11 69 eqnetrd A A π 2 π 2 cos A 0