Metamath Proof Explorer


Theorem cosneg

Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion cosneg A cos A = cos A

Proof

Step Hyp Ref Expression
1 negicn i
2 mulcl i A i A
3 1 2 mpan A i A
4 efcl i A e i A
5 3 4 syl A e i A
6 ax-icn i
7 mulcl i A i A
8 6 7 mpan A i A
9 efcl i A e i A
10 8 9 syl A e i A
11 mulneg12 i A i A = i A
12 6 11 mpan A i A = i A
13 12 eqcomd A i A = i A
14 13 fveq2d A e i A = e i A
15 mul2neg i A i A = i A
16 6 15 mpan A i A = i A
17 16 fveq2d A e i A = e i A
18 14 17 oveq12d A e i A + e i A = e i A + e i A
19 5 10 18 comraddd A e i A + e i A = e i A + e i A
20 19 oveq1d A e i A + e i A 2 = e i A + e i A 2
21 negcl A A
22 cosval A cos A = e i A + e i A 2
23 21 22 syl A cos A = e i A + e i A 2
24 cosval A cos A = e i A + e i A 2
25 20 23 24 3eqtr4d A cos A = cos A