Metamath Proof Explorer


Theorem cosneghalfpi

Description: The cosine of -u _pi / 2 is zero. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion cosneghalfpi cos π 2 = 0

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 1 recni π 2
3 cosneg π 2 cos π 2 = cos π 2
4 2 3 ax-mp cos π 2 = cos π 2
5 coshalfpi cos π 2 = 0
6 4 5 eqtri cos π 2 = 0