Metamath Proof Explorer


Theorem cosord

Description: Cosine is decreasing over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion cosord A 0 π B 0 π A < B cos B < cos A

Proof

Step Hyp Ref Expression
1 simpll A 0 π B 0 π A < B A 0 π
2 simplr A 0 π B 0 π A < B B 0 π
3 simpr A 0 π B 0 π A < B A < B
4 1 2 3 cosordlem A 0 π B 0 π A < B cos B < cos A
5 4 ex A 0 π B 0 π A < B cos B < cos A
6 fveq2 A = B cos A = cos B
7 6 eqcomd A = B cos B = cos A
8 7 a1i A 0 π B 0 π A = B cos B = cos A
9 simplr A 0 π B 0 π B < A B 0 π
10 simpll A 0 π B 0 π B < A A 0 π
11 simpr A 0 π B 0 π B < A B < A
12 9 10 11 cosordlem A 0 π B 0 π B < A cos A < cos B
13 12 ex A 0 π B 0 π B < A cos A < cos B
14 8 13 orim12d A 0 π B 0 π A = B B < A cos B = cos A cos A < cos B
15 14 con3d A 0 π B 0 π ¬ cos B = cos A cos A < cos B ¬ A = B B < A
16 0re 0
17 pire π
18 16 17 elicc2i A 0 π A 0 A A π
19 18 simp1bi A 0 π A
20 16 17 elicc2i B 0 π B 0 B B π
21 20 simp1bi B 0 π B
22 recoscl B cos B
23 recoscl A cos A
24 axlttri cos B cos A cos B < cos A ¬ cos B = cos A cos A < cos B
25 22 23 24 syl2anr A B cos B < cos A ¬ cos B = cos A cos A < cos B
26 19 21 25 syl2an A 0 π B 0 π cos B < cos A ¬ cos B = cos A cos A < cos B
27 axlttri A B A < B ¬ A = B B < A
28 19 21 27 syl2an A 0 π B 0 π A < B ¬ A = B B < A
29 15 26 28 3imtr4d A 0 π B 0 π cos B < cos A A < B
30 5 29 impbid A 0 π B 0 π A < B cos B < cos A