Metamath Proof Explorer


Theorem cospi

Description: The cosine of _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008)

Ref Expression
Assertion cospi cos π = 1

Proof

Step Hyp Ref Expression
1 picn π
2 2cn 2
3 2ne0 2 0
4 1 2 3 divcli π 2
5 cos2t π 2 cos 2 π 2 = 2 cos π 2 2 1
6 4 5 ax-mp cos 2 π 2 = 2 cos π 2 2 1
7 1 2 3 divcan2i 2 π 2 = π
8 7 fveq2i cos 2 π 2 = cos π
9 coshalfpi cos π 2 = 0
10 9 oveq1i cos π 2 2 = 0 2
11 sq0 0 2 = 0
12 10 11 eqtri cos π 2 2 = 0
13 12 oveq2i 2 cos π 2 2 = 2 0
14 2t0e0 2 0 = 0
15 13 14 eqtri 2 cos π 2 2 = 0
16 15 oveq1i 2 cos π 2 2 1 = 0 1
17 df-neg 1 = 0 1
18 16 17 eqtr4i 2 cos π 2 2 1 = 1
19 6 8 18 3eqtr3i cos π = 1