Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
cospi
Next ⟩
efipi
Metamath Proof Explorer
Ascii
Unicode
Theorem
cospi
Description:
The cosine of
_pi
is
-u 1
.
(Contributed by
Paul Chapman
, 23-Jan-2008)
Ref
Expression
Assertion
cospi
⊢
cos
⁡
π
=
−
1
Proof
Step
Hyp
Ref
Expression
1
picn
⊢
π
∈
ℂ
2
2cn
⊢
2
∈
ℂ
3
2ne0
⊢
2
≠
0
4
1
2
3
divcli
⊢
π
2
∈
ℂ
5
cos2t
⊢
π
2
∈
ℂ
→
cos
⁡
2
⁢
π
2
=
2
⁢
cos
⁡
π
2
2
−
1
6
4
5
ax-mp
⊢
cos
⁡
2
⁢
π
2
=
2
⁢
cos
⁡
π
2
2
−
1
7
1
2
3
divcan2i
⊢
2
⁢
π
2
=
π
8
7
fveq2i
⊢
cos
⁡
2
⁢
π
2
=
cos
⁡
π
9
coshalfpi
⊢
cos
⁡
π
2
=
0
10
9
oveq1i
⊢
cos
⁡
π
2
2
=
0
2
11
sq0
⊢
0
2
=
0
12
10
11
eqtri
⊢
cos
⁡
π
2
2
=
0
13
12
oveq2i
⊢
2
⁢
cos
⁡
π
2
2
=
2
⋅
0
14
2t0e0
⊢
2
⋅
0
=
0
15
13
14
eqtri
⊢
2
⁢
cos
⁡
π
2
2
=
0
16
15
oveq1i
⊢
2
⁢
cos
⁡
π
2
2
−
1
=
0
−
1
17
df-neg
⊢
−
1
=
0
−
1
18
16
17
eqtr4i
⊢
2
⁢
cos
⁡
π
2
2
−
1
=
−
1
19
6
8
18
3eqtr3i
⊢
cos
⁡
π
=
−
1