Metamath Proof Explorer


Theorem cosq14ge0

Description: The cosine of a number between -upi / 2 and pi / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion cosq14ge0 A π 2 π 2 0 cos A

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 neghalfpire π 2
3 2 1 elicc2i A π 2 π 2 A π 2 A A π 2
4 3 simp1bi A π 2 π 2 A
5 resubcl π 2 A π 2 A
6 1 4 5 sylancr A π 2 π 2 π 2 A
7 3 simp3bi A π 2 π 2 A π 2
8 subge0 π 2 A 0 π 2 A A π 2
9 1 4 8 sylancr A π 2 π 2 0 π 2 A A π 2
10 7 9 mpbird A π 2 π 2 0 π 2 A
11 picn π
12 halfcl π π 2
13 11 12 ax-mp π 2
14 13 negcli π 2
15 11 13 negsubi π + π 2 = π π 2
16 pidiv2halves π 2 + π 2 = π
17 11 13 13 16 subaddrii π π 2 = π 2
18 15 17 eqtri π + π 2 = π 2
19 13 11 14 18 subaddrii π 2 π = π 2
20 3 simp2bi A π 2 π 2 π 2 A
21 19 20 eqbrtrid A π 2 π 2 π 2 π A
22 pire π
23 suble π 2 A π π 2 A π π 2 π A
24 1 22 23 mp3an13 A π 2 A π π 2 π A
25 4 24 syl A π 2 π 2 π 2 A π π 2 π A
26 21 25 mpbird A π 2 π 2 π 2 A π
27 0re 0
28 27 22 elicc2i π 2 A 0 π π 2 A 0 π 2 A π 2 A π
29 6 10 26 28 syl3anbrc A π 2 π 2 π 2 A 0 π
30 sinq12ge0 π 2 A 0 π 0 sin π 2 A
31 29 30 syl A π 2 π 2 0 sin π 2 A
32 4 recnd A π 2 π 2 A
33 sinhalfpim A sin π 2 A = cos A
34 32 33 syl A π 2 π 2 sin π 2 A = cos A
35 31 34 breqtrd A π 2 π 2 0 cos A