Metamath Proof Explorer


Theorem cosq34lt1

Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 23-Mar-2024)

Ref Expression
Assertion cosq34lt1 A π 2 π cos A < 1

Proof

Step Hyp Ref Expression
1 pire π
2 2re 2
3 2 1 remulcli 2 π
4 3 rexri 2 π *
5 elico2 π 2 π * A π 2 π A π A A < 2 π
6 1 4 5 mp2an A π 2 π A π A A < 2 π
7 6 simp1bi A π 2 π A
8 0red A π 2 π 0
9 1 a1i A π 2 π π
10 pipos 0 < π
11 10 a1i A π 2 π 0 < π
12 6 simp2bi A π 2 π π A
13 8 9 7 11 12 ltletrd A π 2 π 0 < A
14 6 simp3bi A π 2 π A < 2 π
15 0xr 0 *
16 elioo2 0 * 2 π * A 0 2 π A 0 < A A < 2 π
17 15 4 16 mp2an A 0 2 π A 0 < A A < 2 π
18 7 13 14 17 syl3anbrc A π 2 π A 0 2 π
19 cos02pilt1 A 0 2 π cos A < 1
20 18 19 syl A π 2 π cos A < 1