Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
coss1
Next ⟩
coss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
coss1
Description:
Subclass theorem for composition.
(Contributed by
FL
, 30-Dec-2010)
Ref
Expression
Assertion
coss1
⊢
A
⊆
B
→
A
∘
C
⊆
B
∘
C
Proof
Step
Hyp
Ref
Expression
1
ssbr
⊢
A
⊆
B
→
y
A
z
→
y
B
z
2
1
anim2d
⊢
A
⊆
B
→
x
C
y
∧
y
A
z
→
x
C
y
∧
y
B
z
3
2
eximdv
⊢
A
⊆
B
→
∃
y
x
C
y
∧
y
A
z
→
∃
y
x
C
y
∧
y
B
z
4
3
ssopab2dv
⊢
A
⊆
B
→
x
z
|
∃
y
x
C
y
∧
y
A
z
⊆
x
z
|
∃
y
x
C
y
∧
y
B
z
5
df-co
⊢
A
∘
C
=
x
z
|
∃
y
x
C
y
∧
y
A
z
6
df-co
⊢
B
∘
C
=
x
z
|
∃
y
x
C
y
∧
y
B
z
7
4
5
6
3sstr4g
⊢
A
⊆
B
→
A
∘
C
⊆
B
∘
C