Database
REAL AND COMPLEX NUMBERS
Reflexive and transitive closures of relations
The reflexive and transitive properties of relations
coss12d
Next ⟩
trrelssd
Metamath Proof Explorer
Ascii
Unicode
Theorem
coss12d
Description:
Subset deduction for composition of two classes.
(Contributed by
RP
, 24-Dec-2019)
Ref
Expression
Hypotheses
coss12d.a
⊢
φ
→
A
⊆
B
coss12d.c
⊢
φ
→
C
⊆
D
Assertion
coss12d
⊢
φ
→
A
∘
C
⊆
B
∘
D
Proof
Step
Hyp
Ref
Expression
1
coss12d.a
⊢
φ
→
A
⊆
B
2
coss12d.c
⊢
φ
→
C
⊆
D
3
2
ssbrd
⊢
φ
→
x
C
y
→
x
D
y
4
1
ssbrd
⊢
φ
→
y
A
z
→
y
B
z
5
3
4
anim12d
⊢
φ
→
x
C
y
∧
y
A
z
→
x
D
y
∧
y
B
z
6
5
eximdv
⊢
φ
→
∃
y
x
C
y
∧
y
A
z
→
∃
y
x
D
y
∧
y
B
z
7
6
ssopab2dv
⊢
φ
→
x
z
|
∃
y
x
C
y
∧
y
A
z
⊆
x
z
|
∃
y
x
D
y
∧
y
B
z
8
df-co
⊢
A
∘
C
=
x
z
|
∃
y
x
C
y
∧
y
A
z
9
df-co
⊢
B
∘
D
=
x
z
|
∃
y
x
D
y
∧
y
B
z
10
7
8
9
3sstr4g
⊢
φ
→
A
∘
C
⊆
B
∘
D