Metamath Proof Explorer


Theorem coss1cnvres

Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020)

Ref Expression
Assertion coss1cnvres R A -1 = u v | u A v A x u R x v R x

Proof

Step Hyp Ref Expression
1 df-coss R A -1 = u v | x x R A -1 u x R A -1 v
2 br1cnvres x V x R A -1 u u A u R x
3 2 elv x R A -1 u u A u R x
4 br1cnvres x V x R A -1 v v A v R x
5 4 elv x R A -1 v v A v R x
6 3 5 anbi12i x R A -1 u x R A -1 v u A u R x v A v R x
7 an4 u A v A u R x v R x u A u R x v A v R x
8 6 7 bitr4i x R A -1 u x R A -1 v u A v A u R x v R x
9 8 exbii x x R A -1 u x R A -1 v x u A v A u R x v R x
10 19.42v x u A v A u R x v R x u A v A x u R x v R x
11 9 10 bitri x x R A -1 u x R A -1 v u A v A x u R x v R x
12 11 opabbii u v | x x R A -1 u x R A -1 v = u v | u A v A x u R x v R x
13 1 12 eqtri R A -1 = u v | u A v A x u R x v R x