Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
coss2cnvepres
Next ⟩
cossex
Metamath Proof Explorer
Ascii
Unicode
Theorem
coss2cnvepres
Description:
Special case of
coss1cnvres
.
(Contributed by
Peter Mazsa
, 8-Jun-2020)
Ref
Expression
Assertion
coss2cnvepres
⊢
≀
E
-1
↾
A
-1
=
u
v
|
u
∈
A
∧
v
∈
A
∧
∃
x
x
∈
u
∧
x
∈
v
Proof
Step
Hyp
Ref
Expression
1
coss1cnvres
⊢
≀
E
-1
↾
A
-1
=
u
v
|
u
∈
A
∧
v
∈
A
∧
∃
x
u
E
-1
x
∧
v
E
-1
x
2
brcnvep
⊢
u
∈
V
→
u
E
-1
x
↔
x
∈
u
3
2
elv
⊢
u
E
-1
x
↔
x
∈
u
4
brcnvep
⊢
v
∈
V
→
v
E
-1
x
↔
x
∈
v
5
4
elv
⊢
v
E
-1
x
↔
x
∈
v
6
3
5
anbi12i
⊢
u
E
-1
x
∧
v
E
-1
x
↔
x
∈
u
∧
x
∈
v
7
6
exbii
⊢
∃
x
u
E
-1
x
∧
v
E
-1
x
↔
∃
x
x
∈
u
∧
x
∈
v
8
7
anbi2i
⊢
u
∈
A
∧
v
∈
A
∧
∃
x
u
E
-1
x
∧
v
E
-1
x
↔
u
∈
A
∧
v
∈
A
∧
∃
x
x
∈
u
∧
x
∈
v
9
8
opabbii
⊢
u
v
|
u
∈
A
∧
v
∈
A
∧
∃
x
u
E
-1
x
∧
v
E
-1
x
=
u
v
|
u
∈
A
∧
v
∈
A
∧
∃
x
x
∈
u
∧
x
∈
v
10
1
9
eqtri
⊢
≀
E
-1
↾
A
-1
=
u
v
|
u
∈
A
∧
v
∈
A
∧
∃
x
x
∈
u
∧
x
∈
v