Metamath Proof Explorer


Theorem coss2cnvepres

Description: Special case of coss1cnvres . (Contributed by Peter Mazsa, 8-Jun-2020)

Ref Expression
Assertion coss2cnvepres E -1 A -1 = u v | u A v A x x u x v

Proof

Step Hyp Ref Expression
1 coss1cnvres E -1 A -1 = u v | u A v A x u E -1 x v E -1 x
2 brcnvep u V u E -1 x x u
3 2 elv u E -1 x x u
4 brcnvep v V v E -1 x x v
5 4 elv v E -1 x x v
6 3 5 anbi12i u E -1 x v E -1 x x u x v
7 6 exbii x u E -1 x v E -1 x x x u x v
8 7 anbi2i u A v A x u E -1 x v E -1 x u A v A x x u x v
9 8 opabbii u v | u A v A x u E -1 x v E -1 x = u v | u A v A x x u x v
10 1 9 eqtri E -1 A -1 = u v | u A v A x x u x v