Metamath Proof Explorer


Theorem cosscnv

Description: Class of cosets by the converse of R (Contributed by Peter Mazsa, 17-Jun-2020)

Ref Expression
Assertion cosscnv R -1 = x y | u x R u y R u

Proof

Step Hyp Ref Expression
1 df-coss R -1 = x y | u u R -1 x u R -1 y
2 brcnvg u V x V u R -1 x x R u
3 2 el2v u R -1 x x R u
4 brcnvg u V y V u R -1 y y R u
5 4 el2v u R -1 y y R u
6 3 5 anbi12i u R -1 x u R -1 y x R u y R u
7 6 exbii u u R -1 x u R -1 y u x R u y R u
8 7 opabbii x y | u u R -1 x u R -1 y = x y | u x R u y R u
9 1 8 eqtri R -1 = x y | u x R u y R u