Metamath Proof Explorer


Theorem cossub

Description: Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion cossub A B cos A B = cos A cos B + sin A sin B

Proof

Step Hyp Ref Expression
1 negcl B B
2 cosadd A B cos A + B = cos A cos B sin A sin B
3 1 2 sylan2 A B cos A + B = cos A cos B sin A sin B
4 negsub A B A + B = A B
5 4 fveq2d A B cos A + B = cos A B
6 cosneg B cos B = cos B
7 6 adantl A B cos B = cos B
8 7 oveq2d A B cos A cos B = cos A cos B
9 sinneg B sin B = sin B
10 9 adantl A B sin B = sin B
11 10 oveq2d A B sin A sin B = sin A sin B
12 sincl A sin A
13 sincl B sin B
14 mulneg2 sin A sin B sin A sin B = sin A sin B
15 12 13 14 syl2an A B sin A sin B = sin A sin B
16 11 15 eqtrd A B sin A sin B = sin A sin B
17 8 16 oveq12d A B cos A cos B sin A sin B = cos A cos B sin A sin B
18 coscl A cos A
19 coscl B cos B
20 mulcl cos A cos B cos A cos B
21 18 19 20 syl2an A B cos A cos B
22 mulcl sin A sin B sin A sin B
23 12 13 22 syl2an A B sin A sin B
24 21 23 subnegd A B cos A cos B sin A sin B = cos A cos B + sin A sin B
25 17 24 eqtrd A B cos A cos B sin A sin B = cos A cos B + sin A sin B
26 3 5 25 3eqtr3d A B cos A B = cos A cos B + sin A sin B