Metamath Proof Explorer


Theorem cosval

Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion cosval A cos A = e i A + e i A 2

Proof

Step Hyp Ref Expression
1 oveq2 x = A i x = i A
2 1 fveq2d x = A e i x = e i A
3 oveq2 x = A i x = i A
4 3 fveq2d x = A e i x = e i A
5 2 4 oveq12d x = A e i x + e i x = e i A + e i A
6 5 oveq1d x = A e i x + e i x 2 = e i A + e i A 2
7 df-cos cos = x e i x + e i x 2
8 ovex e i A + e i A 2 V
9 6 7 8 fvmpt A cos A = e i A + e i A 2