Metamath Proof Explorer


Theorem cotr2

Description: Two ways of saying a relation is transitive. Special instance of cotr2g . (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr2.a dom R A
cotr2.b dom R ran R B
cotr2.c ran R C
Assertion cotr2 R R R x A y B z C x R y y R z x R z

Proof

Step Hyp Ref Expression
1 cotr2.a dom R A
2 cotr2.b dom R ran R B
3 cotr2.c ran R C
4 incom dom R ran R = ran R dom R
5 4 2 eqsstrri ran R dom R B
6 1 5 3 cotr2g R R R x A y B z C x R y y R z x R z