Step |
Hyp |
Ref |
Expression |
1 |
|
cotr2g.d |
|
2 |
|
cotr2g.e |
|
3 |
|
cotr2g.f |
|
4 |
|
cotrg |
|
5 |
|
nfv |
|
6 |
|
nfv |
|
7 |
5 6
|
19.21-2 |
|
8 |
7
|
albii |
|
9 |
|
simpl |
|
10 |
|
id |
|
11 |
|
simpr |
|
12 |
9 10 11
|
3jca |
|
13 |
|
simp2 |
|
14 |
12 13
|
impbii |
|
15 |
|
vex |
|
16 |
|
vex |
|
17 |
15 16
|
breldm |
|
18 |
1 17
|
sselid |
|
19 |
18
|
pm4.71ri |
|
20 |
15 16
|
brelrn |
|
21 |
|
vex |
|
22 |
16 21
|
breldm |
|
23 |
|
elin |
|
24 |
23
|
biimpri |
|
25 |
20 22 24
|
syl2an |
|
26 |
2 25
|
sselid |
|
27 |
26
|
pm4.71ri |
|
28 |
16 21
|
brelrn |
|
29 |
3 28
|
sselid |
|
30 |
29
|
pm4.71ri |
|
31 |
19 27 30
|
3anbi123i |
|
32 |
|
3an6 |
|
33 |
13 12
|
impbii |
|
34 |
33
|
anbi2i |
|
35 |
32 34
|
bitri |
|
36 |
14 31 35
|
3bitri |
|
37 |
36
|
imbi1i |
|
38 |
|
impexp |
|
39 |
|
3impexp |
|
40 |
37 38 39
|
3bitri |
|
41 |
40
|
albii |
|
42 |
41
|
2albii |
|
43 |
|
df-ral |
|
44 |
8 42 43
|
3bitr4i |
|
45 |
|
df-ral |
|
46 |
|
19.21v |
|
47 |
46
|
bicomi |
|
48 |
47
|
albii |
|
49 |
45 48
|
bitri |
|
50 |
49
|
bicomi |
|
51 |
50
|
ralbii |
|
52 |
44 51
|
bitri |
|
53 |
|
df-ral |
|
54 |
53
|
bicomi |
|
55 |
54
|
ralbii |
|
56 |
55
|
ralbii |
|
57 |
4 52 56
|
3bitri |
|