Metamath Proof Explorer


Theorem cotr3

Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020)

Ref Expression
Hypotheses cotr3.a A = dom R
cotr3.b B = A C
cotr3.c C = ran R
Assertion cotr3 R R R x A y B z C x R y y R z x R z

Proof

Step Hyp Ref Expression
1 cotr3.a A = dom R
2 cotr3.b B = A C
3 cotr3.c C = ran R
4 1 eqimss2i dom R A
5 1 3 ineq12i A C = dom R ran R
6 2 5 eqtri B = dom R ran R
7 6 eqimss2i dom R ran R B
8 3 eqimss2i ran R C
9 4 7 8 cotr2 R R R x A y B z C x R y y R z x R z