Database
REAL AND COMPLEX NUMBERS
Reflexive and transitive closures of relations
The reflexive and transitive properties of relations
cotr3
Next ⟩
coemptyd
Metamath Proof Explorer
Ascii
Unicode
Theorem
cotr3
Description:
Two ways of saying a relation is transitive.
(Contributed by
RP
, 22-Mar-2020)
Ref
Expression
Hypotheses
cotr3.a
⊢
A
=
dom
⁡
R
cotr3.b
⊢
B
=
A
∩
C
cotr3.c
⊢
C
=
ran
⁡
R
Assertion
cotr3
⊢
R
∘
R
⊆
R
↔
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
x
R
y
∧
y
R
z
→
x
R
z
Proof
Step
Hyp
Ref
Expression
1
cotr3.a
⊢
A
=
dom
⁡
R
2
cotr3.b
⊢
B
=
A
∩
C
3
cotr3.c
⊢
C
=
ran
⁡
R
4
1
eqimss2i
⊢
dom
⁡
R
⊆
A
5
1
3
ineq12i
⊢
A
∩
C
=
dom
⁡
R
∩
ran
⁡
R
6
2
5
eqtri
⊢
B
=
dom
⁡
R
∩
ran
⁡
R
7
6
eqimss2i
⊢
dom
⁡
R
∩
ran
⁡
R
⊆
B
8
3
eqimss2i
⊢
ran
⁡
R
⊆
C
9
4
7
8
cotr2
⊢
R
∘
R
⊆
R
↔
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
x
R
y
∧
y
R
z
→
x
R
z