Metamath Proof Explorer


Theorem cotrg

Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr for the main application. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)

Ref Expression
Assertion cotrg A B C x y z x B y y A z x C z

Proof

Step Hyp Ref Expression
1 relco Rel A B
2 ssrel3 Rel A B A B C x z x A B z x C z
3 1 2 ax-mp A B C x z x A B z x C z
4 vex x V
5 vex z V
6 4 5 brco x A B z y x B y y A z
7 6 imbi1i x A B z x C z y x B y y A z x C z
8 19.23v y x B y y A z x C z y x B y y A z x C z
9 7 8 bitr4i x A B z x C z y x B y y A z x C z
10 9 albii z x A B z x C z z y x B y y A z x C z
11 breq2 z = w y A z y A w
12 11 anbi2d z = w x B y y A z x B y y A w
13 breq2 z = w x C z x C w
14 12 13 imbi12d z = w x B y y A z x C z x B y y A w x C w
15 breq2 y = w x B y x B w
16 breq1 y = w y A z w A z
17 15 16 anbi12d y = w x B y y A z x B w w A z
18 17 imbi1d y = w x B y y A z x C z x B w w A z x C z
19 14 18 alcomw z y x B y y A z x C z y z x B y y A z x C z
20 10 19 bitri z x A B z x C z y z x B y y A z x C z
21 20 albii x z x A B z x C z x y z x B y y A z x C z
22 3 21 bitri A B C x y z x B y y A z x C z