Metamath Proof Explorer


Theorem cotrgOLD

Description: Obsolete version of cotrg as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLD A B C x y z x B y y A z x C z

Proof

Step Hyp Ref Expression
1 relco Rel A B
2 ssrel3 Rel A B A B C x z x A B z x C z
3 1 2 ax-mp A B C x z x A B z x C z
4 vex x V
5 vex z V
6 4 5 brco x A B z y x B y y A z
7 6 imbi1i x A B z x C z y x B y y A z x C z
8 19.23v y x B y y A z x C z y x B y y A z x C z
9 7 8 bitr4i x A B z x C z y x B y y A z x C z
10 9 albii z x A B z x C z z y x B y y A z x C z
11 alcom z y x B y y A z x C z y z x B y y A z x C z
12 10 11 bitri z x A B z x C z y z x B y y A z x C z
13 12 albii x z x A B z x C z x y z x B y y A z x C z
14 3 13 bitri A B C x y z x B y y A z x C z