Metamath Proof Explorer


Theorem cotrgOLDOLD

Description: Obsolete version of cotrg as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cotrgOLDOLD A B C x y z x B y y A z x C z

Proof

Step Hyp Ref Expression
1 relco Rel A B
2 ssrel Rel A B A B C x z x z A B x z C
3 1 2 ax-mp A B C x z x z A B x z C
4 vex x V
5 vex z V
6 4 5 opelco x z A B y x B y y A z
7 df-br x C z x z C
8 7 bicomi x z C x C z
9 6 8 imbi12i x z A B x z C y x B y y A z x C z
10 19.23v y x B y y A z x C z y x B y y A z x C z
11 9 10 bitr4i x z A B x z C y x B y y A z x C z
12 11 albii z x z A B x z C z y x B y y A z x C z
13 alcom z y x B y y A z x C z y z x B y y A z x C z
14 12 13 bitri z x z A B x z C y z x B y y A z x C z
15 14 albii x z x z A B x z C x y z x B y y A z x C z
16 3 15 bitri A B C x y z x B y y A z x C z