Metamath Proof Explorer


Theorem cottrcl

Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024)

Ref Expression
Assertion cottrcl R t++ R t++ R

Proof

Step Hyp Ref Expression
1 relres Rel R V
2 ssttrcl Rel R V R V t++ R V
3 1 2 ax-mp R V t++ R V
4 coss1 R V t++ R V R V t++ R V t++ R V t++ R V
5 3 4 ax-mp R V t++ R V t++ R V t++ R V
6 ttrcltr t++ R V t++ R V t++ R V
7 5 6 sstri R V t++ R V t++ R V
8 ssv ran t++ R V V
9 cores ran t++ R V V R V t++ R V = R t++ R V
10 8 9 ax-mp R V t++ R V = R t++ R V
11 ttrclresv t++ R V = t++ R
12 11 coeq2i R t++ R V = R t++ R
13 10 12 eqtri R V t++ R V = R t++ R
14 7 13 11 3sstr3i R t++ R t++ R