Metamath Proof Explorer


Theorem counop

Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion counop S UniOp T UniOp S T UniOp

Proof

Step Hyp Ref Expression
1 unopf1o S UniOp S : 1-1 onto
2 unopf1o T UniOp T : 1-1 onto
3 f1oco S : 1-1 onto T : 1-1 onto S T : 1-1 onto
4 1 2 3 syl2an S UniOp T UniOp S T : 1-1 onto
5 f1ofo S T : 1-1 onto S T : onto
6 4 5 syl S UniOp T UniOp S T : onto
7 f1of T : 1-1 onto T :
8 2 7 syl T UniOp T :
9 8 adantl S UniOp T UniOp T :
10 simpl x y x
11 fvco3 T : x S T x = S T x
12 9 10 11 syl2an S UniOp T UniOp x y S T x = S T x
13 simpr x y y
14 fvco3 T : y S T y = S T y
15 9 13 14 syl2an S UniOp T UniOp x y S T y = S T y
16 12 15 oveq12d S UniOp T UniOp x y S T x ih S T y = S T x ih S T y
17 ffvelrn T : x T x
18 ffvelrn T : y T y
19 17 18 anim12dan T : x y T x T y
20 8 19 sylan T UniOp x y T x T y
21 unop S UniOp T x T y S T x ih S T y = T x ih T y
22 21 3expb S UniOp T x T y S T x ih S T y = T x ih T y
23 20 22 sylan2 S UniOp T UniOp x y S T x ih S T y = T x ih T y
24 23 anassrs S UniOp T UniOp x y S T x ih S T y = T x ih T y
25 unop T UniOp x y T x ih T y = x ih y
26 25 3expb T UniOp x y T x ih T y = x ih y
27 26 adantll S UniOp T UniOp x y T x ih T y = x ih y
28 16 24 27 3eqtrd S UniOp T UniOp x y S T x ih S T y = x ih y
29 28 ralrimivva S UniOp T UniOp x y S T x ih S T y = x ih y
30 elunop S T UniOp S T : onto x y S T x ih S T y = x ih y
31 6 29 30 sylanbrc S UniOp T UniOp S T UniOp