Metamath Proof Explorer


Theorem cph2di

Description: Distributive law for inner product. Complex version of ip2di . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses cphipcj.h , ˙ = 𝑖 W
cphipcj.v V = Base W
cphdir.P + ˙ = + W
cph2di.1 φ W CPreHil
cph2di.2 φ A V
cph2di.3 φ B V
cph2di.4 φ C V
cph2di.5 φ D V
Assertion cph2di φ A + ˙ B , ˙ C + ˙ D = A , ˙ C + B , ˙ D + A , ˙ D + B , ˙ C

Proof

Step Hyp Ref Expression
1 cphipcj.h , ˙ = 𝑖 W
2 cphipcj.v V = Base W
3 cphdir.P + ˙ = + W
4 cph2di.1 φ W CPreHil
5 cph2di.2 φ A V
6 cph2di.3 φ B V
7 cph2di.4 φ C V
8 cph2di.5 φ D V
9 eqid Scalar W = Scalar W
10 eqid + Scalar W = + Scalar W
11 cphphl W CPreHil W PreHil
12 4 11 syl φ W PreHil
13 9 1 2 3 10 12 5 6 7 8 ip2di φ A + ˙ B , ˙ C + ˙ D = A , ˙ C + Scalar W B , ˙ D + Scalar W A , ˙ D + Scalar W B , ˙ C
14 cphclm W CPreHil W CMod
15 9 clmadd W CMod + = + Scalar W
16 4 14 15 3syl φ + = + Scalar W
17 16 oveqd φ A , ˙ C + B , ˙ D = A , ˙ C + Scalar W B , ˙ D
18 16 oveqd φ A , ˙ D + B , ˙ C = A , ˙ D + Scalar W B , ˙ C
19 16 17 18 oveq123d φ A , ˙ C + B , ˙ D + A , ˙ D + B , ˙ C = A , ˙ C + Scalar W B , ˙ D + Scalar W A , ˙ D + Scalar W B , ˙ C
20 13 19 eqtr4d φ A + ˙ B , ˙ C + ˙ D = A , ˙ C + B , ˙ D + A , ˙ D + B , ˙ C